The ground state densities of unstable neutron-rich 11Li and 12Be exotic nuclei are studied in the framework of the binary cluster model (BCM). The internal densities of the clusters are described by the single particle harmonic oscillator wave functions. The long tail performance is clearly noticed in the calculated neutron and matter density distributions of these nuclei. The structures of the two valence neutrons in 11Li and 12Be are found to be mixed configurations with dominant (1p1/2)2. Elastic electron scattering proton form factors for 11Li and 12Be are studied using the plane wave Born approximation (PWBA). It is found that the major difference between the calculated form factors of unstable nuclei [11Li, 12Be] and those of stab
... Show MoreA spherical-statistical optical model (SOM) has been used to calculate and evaluate the neutron interaction with medium nuclei (40 ). Empirical formulae of the optical potentials parameters are predicted with minimize accuracy compared with experimental bench work data. With these optical formulae an evaluation of the shape and compound elastic scattering cross-section of interaction neutrons with 56Fe nuclei at different energy range (1-20) MeV has been calculated and compared with experimental results. Also, volume integrals for real and imaginary potential energies have been evaluated and matched with the standard ABAREX code. Good agreements with have been achieved with the available experimental data.
Pro-inflammatory cytokines play an important role in intercellular communications. In the last two decades, many cytokines have been identified in human milk. These cytokines are variable according to different conditions such as pathogenic infections which strongly stimulated the immune response. The present study aims to determine of IL1β and TNF-α in Toxoplasma gondii-free and infected women in an attempt to clarify the impacts of the infections on cytokines especially in mother's milk. The serum and milk sample were collected from 96 samples (48 for seropositive and 48 for seronegative). To confirm the Toxoplasma gondii infection; enzyme linked immunofluorescence assay (ELIFA) was used to detect anti-Toxoplasma Ig
... Show MoreThe Skyrme–Hartree–Fock (SHF) method with MSK7 Skyrme parameter has been used to investigate the ground-state properties for two-neutron halo nuclei 6He, 11Li, 12Be and 14Be. These ground-state properties include the proton, neutron and matter density distributions, the corresponding rms radii, the binding energy per nucleon and the charge form factors. These calculations clearly reveal the long tail characterizing the halo nuclei as a distinctive feature.
The charge density distributions (CDD) and the elastic electron
scattering form factors F(q) of the ground state for some even mass
nuclei in the 2s 1d shell ( Ne Mg Si 20 24 28 , , and S 32 ) nuclei have
been calculated based on the use of occupation numbers of the states
and the single particle wave functions of the harmonic oscillator
potential with size parameters chosen to reproduce the observed root
mean square charge radii for all considered nuclei. It is found that
introducing additional parameters, namely 1 , and , 2 which
reflect the difference of the occupation numbers of the states from
the prediction of the simple shell model leads to a remarkable
agreement between the calculated an
The ground state proton, neutron and matter densities, the corresponding rms radii and charge form factors of a dripline nuclei 6He, 11Li, 12Be and 14Be have been studied via a three–body model of (Core + n + n). The core–neutron interaction takes the form of Woods-Saxon (WS) potential. The two valence neutrons of 6He, 11Li and 12Be interact by the realistic interaction of ZBMII while those of 14Be interact via the realistic interaction of VPNP. The core and valence (halo) density distributions are described by the single-particle wave functions of the WS potential. The calculated results are discussed and compared with the experimental data. The long tail performance is clearly noticed in the calculated neutron and matter density distr
... Show MoreThe magnetic dipole moments and the root mean square radius have been calculated some the Fluorine (A= 17, 19, 20, 21) isotopes based on the sd-shell model using universal sd-shell interaction A (USDA). All studied isotopes are composed of 16O nucleus that is considered as an inert core and the other valence particles are moving over the sd-shell model space within 1d5/2, 2s1/2 and 1d3/2 orbits. The configuration of mixing shell model with limiting number of orbitals in the model space outside the inert core fail to reproduce the measured magnetic dipole moments. Therefore, and for the purpose of enhancing the calculations, the discarded space has been included the core polarization effect through the effective g-factors. The harmonic os
... Show MoreIn this effort, we define a new class of fractional analytic functions containing functional parameters in the open unit disk. By employing this class, we introduce two types of fractional operators, differential and integral. The fractional differential operator is considered to be in the sense of Ruscheweyh differential operator, while the fractional integral operator is in the sense of Noor integral. The boundedness and compactness in a complex Banach space are discussed. Other studies are illustrated in the sequel.