Optimization of gas lift plays a substantial role in production and maximizing the net present value of the investment of oil field projects. However, the application of the optimization techniques in gas lift project is so complex because many decision variables, objective functions and constraints are involved in the gas lift optimization problem. In addition, many computational ways; traditional and modern, have been employed to optimize gas lift processes. This research aims to present the developing of the optimization techniques applied in the gas lift. Accordingly, the research classifies the applied optimization techniques, and it presents the limitations and the range of applications of each one to get an acceptable level of accuracy and simulation run time. Finally, the paper provides a comprehensive review of the gas lift optimization techniques applied in the petroleum industry range from traditional method to the recent artificial intelligence techniques.
Assessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem
Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreIn this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show MoreMalaria is a curative disease, with therapeutics available for patients, such as drugs that can prevent future malaria infections in countries vulnerable to malaria. Though, there is no effective malaria vaccine until now, although it is an interesting research area in medicine. Local descriptors of blood smear image are exploited in this paper to solve parasitized malaria infection detection problem. Swarm intelligence is used to separate the red blood cells from the background of the blood slide image in adaptive manner. After that, the effective corner points are detected and localized using Harris corner detection method. Two types of local descriptors are generated from the local regions of the effective corners which are Gabor based f
... Show MoreThis paper presents the Taguchi approach for optimization of hardness for shape memory alloy (Cu-Al-Ni) . The influence of powder metallurgy parameters on hardness has been investigated. Taguchi technique and ANOVA were used for analysis. Nine experimental runs based on Taguchi’s L9 orthogonal array were performed (OA),for two parameters was study (Pressure and sintering temperature) for three different levels (300 ,500 and 700) MPa ,(700 ,800 and 900)oC respectively . Main effect, signal-to-noise (S/N) ratio was study, and analysis of variance (ANOVA) using to investigate the micro-hardness characteristics of the shape memory alloy .after application the result of study shown the hei
... Show MoreIn this paper, new method have been investigated using evolving algorithms (EA's) to cryptanalysis one of the nonlinear stream cipher cryptosystems which depends on the Linear Feedback Shift Register (LFSR) unit by using cipher text-only attack. Genetic Algorithm (GA) and Ant Colony Optimization (ACO) which are used for attacking one of the nonlinear cryptosystems called "shrinking generator" using different lengths of cipher text and different lengths of combined LFSRs. GA and ACO proved their good performance in finding the initial values of the combined LFSRs. This work can be considered as a warning for a stream cipher designer to avoid the weak points, which may be f
... Show MoreIn this paper, the main work is to minimize a function of three cost criteria for scheduling n jobs on a single machine. We proposed algorithms to solve the single machine scheduling multiobjective problem. In this problem, we consider minimizing the total completion times, total tardiness and maximum tardiness criteria. First a branch and bound (BAB) algorithm is applied for the 1//∑Ci+∑Ti+Tmax problem. Second we compare two multiobjective algorithms one of them based on (BAB) algorithm to find the set of efficient (non dominated) solutions for the 1//(∑Ci ,∑Ti ,Tmax) problem. The computational results show that the algorithm based on (BAB) algorithm is better than the other one for generated the total number of
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreAim of the research is the study of improving the performance of the thermal station south Baghdad and the main reasons for reduced its efficiency. South Baghdad power planet comprises (6) steam turbine units and (18) gas turbine units .The gas turbine units are composed of two groups: the first group is made up of gas units (1,2), each of capacity (123) MW. The design efficiency of gas turbine units is 32%. The actual efficiency data of steam units is 18.3% instead of 45% which is the design efficiency. The main reason for efficiency reduction of gas units is the rejected thermal energy with the exhaust gases to atmosphere, that are (450-510) ℃.The bad type of fuel used (heavy) fuel. Another reason for the low efficiency and has a neg
... Show MoreAbstract
The catalytic cracking conversion of Iraqi vacuum gas oil was studied on large and medium pore size (HY, HX, ZSM-22 and ZSM-11) of zeolite catalysts. These catalysts were prepared locally and used in the present work. The catalytic conversion performed on a continuous fixed-bed laboratory reaction unit. Experiments were performed in the temperature range of 673 to 823K, pressure range of 3 to 15bar, and LHSV range of 0.5-3h-1. The results show that the catalytic conversion of vacuum gas oil increases with increase in reaction temperature and decreases with increase in LHSV. The catalytic activity for the proposed catalysts arranged in the following order:
HY>H
... Show More