Concerns about the environment, the cost of energy, and safety mean that low-energy cold-mix asphalt materials are very interesting as a potential replacement for present-day hot mix asphalt. The main disadvantage of cold bituminous emulsion mixtures is their poor early life strength, meaning they require a long time to achieve mature strength. This research work aims to study the protentional utilization of waste and by-product materials as a filler in cold emulsion mixtures with mechanical properties comparable to those of traditional hot mix asphalt. Accordingly, cold mix asphalt was prepared to utilize paper sludge ash (PSA) and cement kiln dust (CKD) as a substitution for conventional mineral filler with percentages ranging from 0–6% and 0–4%, respectively. Test results have shown that the incorporation of such waste materials reflected a significant improvement in the mixture’s stiffness and strength evolution. The cementitious reactivity of PSA produces bonding inside the mixtures, while CKD is used as an additive to activate the hydration process of PSA. Therefore, based on the results, it will be easier to build cold mixtures by shortening the amount of time needed to reach full curing conditions.
Highly Modified Asphalt (HiMA) binders have garnered significant attention due to their superior resistance to rutting, fatigue cracking, and thermal distress under heavy traffic loads and extreme environmental conditions. While elastomeric polymers such as Styrene- Butadiene-Styrene (SBS) have been extensively used in HiMA applications, the potential of plastomeric polymers, including Polyethylene (PE) and Ethylene Vinyl Acetate (EVA), remains largely unexplored. This study aims to evaluate the performance of reference binder (RB) modified with plastomeric HiMA asphalt in comparison to SBS-modified binders and determine the optimal polymer dosage for achieving an optimal balance between rutting resistance and fatigue durability. The experi
... Show MoreAbstract:
This research seeks to test the influence of intellectual capital as an explanatory variable and its components (human capital, structural capital, relational capital) and sustainable competitive performance as a responsive variable and its components (reducing service delivery cycle time, rapid response to market demand, increasing customer satisfaction, providing better Quality of service, increasing market share)” through a field study, and here the research problem was diagnosed in an attempt to answer the following question: Is there awareness among the senior management within the private colle
... Show MoreBecause of the experience of the mixture problem of high correlation and the existence of linear MultiCollinearity between the explanatory variables, because of the constraint of the unit and the interactions between them in the model, which increases the existence of links between the explanatory variables and this is illustrated by the variance inflation vector (VIF), L-Pseudo component to reduce the bond between the components of the mixture.
To estimate the parameters of the mixture model, we used in our research the use of methods that increase bias and reduce variance, such as the Ridge Regression Method and the Least Absolute Shrinkage and Selection Operator (LASSO) method a
... Show MoreGlobally, Sustainability is very quickly becoming a fundamental requirement of the construction industry as it delivers its projects; whether buildings or infrastructures. Throughout more than two decades, many modeling schemes, evaluation tools, and rating systems have been introduced en route to realizing sustainable construction. Many of these, however, lack consensus on evaluation criteria, a robust scientific model that captures the logic behind their sustainability performance evaluation, and therefore experience discrepancies between rated results and actual performance. Moreover, very few of the evaluation tools available satisfactorily address infrastructure projects. The res

Many tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.
Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.
A nano recycled glass p
Many tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.
Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.
A nano recycled glass p
This study was undertaken to introduce a fast, accurate, selective, simple and environment-friendly colorimetric method to determine iron (II) concentration in different lipstick brands imported or manufactured locally in Baghdad, Iraq. The samples were collected from 500-Iraqi dinars stores to establish routine tests using the spectrophotometric method and compared with a new microfluidic paper-based analytical device (µPAD) platform as an alternative to cost-effective conventional instrumentation such as Atomic Absorption Spectroscopy (AAS). This method depends on the reaction between iron (II) with iron(II) selective chelator 1, 10-phenanthroline(phen) in the presence of reducing agent hydroxylamine (HOA) and sodium acetate (NaOAc) b
... Show MoreIn oil and gas well cementing, a strong cement sheath is wanted to insure long-term safety of the wells. Successful completion of cementing job has become more complex, as drilling is being done in highly deviated and high pressure-high temperature wells. Use of nano materials in enhanced oil recovery, drilling fluid, oil well cementing and other applications is being investigated. This study is an attempt to investigate the effect of nano materials on oil well cement properties. Two types of nano materials were investigated, which are Nano silica (>40 nm) and Nano Alumina (80 nm) and high sulfate-resistant glass G cement is used. The investigated properties of oil well cement included compressive strength, thickening
... Show More