Fe3O4:Ce thin films were deposited on glass and Si substrates by Pulse Laser Deposition Technique (PLD). Polycrystalline nature of the cubic structure with the preferred orientation of (311) are proved by X-ray diffraction. The nano size of the prepared films are revealed by SEM measurement. Undoped Iron oxide and doped with different concentration of Ce films have direct allowed transition band gap with 2.15±0.1 eV which is confirmed by PL Photoluminescence measurements. The PL spectra consist of the emission band located at two sets of peaks, set (A) at 579±2 nm , and set (B) at 650 nm, respectively when it is excited at an excitation wavelength of 280 nm at room temperature. I-V characteristics have been studied in the dark and under various illuminations intensities. Ideality factor, barrier height and saturation current have been calculated in the dark. Photocurrent, gain and sensitivity have been measured under illuminations with halogen lamp with different intensities. Fe3O4:Ce thin films have been used in photoconductive applications, many wavelengths have been used; 373, 395, 445, 475, 540, 935 nm. Sensitivity, rise and fall times have been calculated for these wavelengths. In general the results revealed fast rise and fall times which is~ ms with more than 1000% sensitivity for 935 nm
In recent years, there has been a very rapid development in the field of clean energy due to the huge increase in the demand, which prompted the manufacturers and the designers to increase the efficiency and operating life of the energy systems and especially for wind turbine. It can be considered that the control unit is the main key of the wind turbines. Consequently, it’s essential to understanding the working principle of this unit and spotlight on the factors which influence significantly on the performance of wind turbine system. Simulink technique is proposed to find the response of the wind turbine system under different working conditions. In this paper, it was investigated
In this paper, a discrete- time ratio-dependent prey- predator model is proposed and analyzed. All possible fixed points have been obtained. The local stability conditions for these fixed points have been established. The global stability of the proposed system is investigated numerically. Bifurcation diagrams as a function of growth rate of the prey species are drawn. It is observed that the proposed system has rich dynamics including chaos.
Objectives: The aim of this study was to assess the possible the association between +3061 (G>A, rs1143676) missense mutation in exon 24 of the integrin α-4 subunit (ITGA-4) gene and the response to natalizumab in a sample of Iraqi multiple sclerosis patients. Methods: A sample of 59 patients with multiple sclerosis (16 males and 43 females; mean age of 32 years; age range of 15 to 52 years) receiving natalizumab for at least 12 consecutive months were involved in the study between March and August/ 2022. The sample was categorized into two groups according to their response to natalizumab treatment (responders and non-responders). Polymerase chain reaction and Sanger’s sequencing for the extracted deoxyribonucleic acid was pe
... Show MoreThis study was aimed to investigate the response surface methodology (RSM) to evaluate the effects of various experimental conditions on the removal of levofloxacin (LVX) from the aqueous solution by means of electrocoagulation (EC) technique with stainless steel electrodes. The EC process was achieved successfully with the efficiency of LVX removal of 90%. The results obtained from the regression analysis, showed that the data of experiential are better fitted to the polynomial model of second-order with the predicted correlation coefficient (pred. R2) of 0.723, adjusted correlation coefficient (Adj. R2) of 0.907 and correlation coefficient values (R2) of 0.952. This shows that the predicted models and experimental values are in go
... Show MoreAlthough the axial aptitude and pile load transfer under static loading have been extensively documented, the dynamic axial reaction, on the other hand, requires further investigation. During a seismic event, the pile load applied may increase, while the soil load carrying capacity may decrease due to the shaking, resulting in additional settlement. The researchers concentrated their efforts on determining the cause of extensive damage to the piles after the seismic event. Such failures were linked to discontinuities in the subsoil due to abrupt differences in soil stiffness, and so actions were called kinematic impact of the earthquake on piles depending on the outcomes of laboratory
This paper investigates the experimental response of composite reinforced concrete with GFRP and steel I-sections under limited cycles of repeated load. The practical work included testing four beams. A reference beam, two composite beams with pultruded GFRP I-sections, and a composite beam with a steel I-beam were subjected to repeated loading. The repeated loading test started by loading gradually up to a maximum of 75% of the ultimate static failure load for five loading and unloading cycles. After that, the specimens were reloaded gradually until failure. All test specimens were tested under a three-point load. Experimental results showed that the ductility index increased for the composite beams relative to the refe
... Show More