The prostaglandins inside inflamed tissues are produced by cyclooxygenase-2 (COX-2), making it an important target for improving anti-inflammatory medications over a long period. Adverse effects have been related to the traditional usage of non-steroidal anti-inflammatory drugs (NSAIDs) for the treatment of inflammation, mainly centered around gastrointestinal (GI) complications. The current research involves the creation of a virtual library of innovative molecules showing similar drug properties via a structure-based drug design. A library that includes five novel derivatives of Diclofenac was designed. Subsequently, molecular docking through the Glide module and determining the binding free energy implementing the Prime-MMGBSA module by the Schrödinger software package was used to identify compounds that showed marked specificity towards the COX-2 isoform. In addition, the ligands are subject to evaluation of their drug-like properties and ADMET (absorption, distribution, metabolism, excretion, and toxicity) characteristics using the QikProp module. Finally, molecular dynamics simulation has been calculated for the best molecule. The docking results indicated that all compounds own a predictive capability for specific binding to the COX-2 enzyme compared to the standard drug with a docking score range from -10.07 to -10.66 Kcal/mole, thus potentially overcoming the limitations imposed previously by the drugs currently used in clinical use. The ADMET analysis of the virtually active compounds demonstrated an acceptable drug-like profile and desirable pharmacokinetics properties. MM/GBSA calculation revealed that all the suggested compounds exhibited favorable free binding energies (-49.150 to - 60.185 Kcal/mole), indicating their strong potential to fit well into the COX-2 receptor. Finally, the MD simulation study revealed that compound 1 had perfect alignment with COX-2 receptor. The findings indicated that the compounds possess a predictive capability for specific binding to the COX-2 enzyme, thus potentially surmounting the restrictions imposed by the drugs currently employed in clinical use.
This study aims at examining and confirming the patterns of phenetic relationships and the levels of variations within and among the species of Lotus L., 1753 in Egypt by using morphometric analysis techniques. We have evaluated 24 morphological characters from about 300 herbarium specimens representing 19 species of Lotus that are currently recognized. Based on numerical analyses of macromorphological characters (cluster analysis, principal coordinate analysis and principal component analysis), 19 species of Lotus were recognized from Egypt. These species were clustered in six species-specific groups: (I) Lotus halophilus Boiss. & Spruner, L. angustissimus L., L. glinoides Delile and L. schimperi Steud. ex Boiss., (II) Lotus glaber
... Show MoreThis research presents a method of using MATLAB in analyzing a nonhomogeneous soil (Gibson-type) by
estimating the displacements and stresses under the strip footing during applied incremental loading
sequences. This paper presents a two-dimensional finite element method. In this method, the soil is divided into a number of triangle elements. A model soil (Gibson-type) with linearly increasing modulus of elasticity with depth is presented. The influences of modulus of elasticity, incremental loading, width of footing, and depth of footing are considered in this paper. The results are compared with authors' conclusions of previous studies.
Undoped and Iodine (I)–doped chrome oxide (Cr2O3)thin films have been prepared by chemical spray pyrolysis technique at substrate temperatures(773K) on glass substrate. Absorbance and transmittance spectra have been recorded as a function of wavelength in the range (340-800 nm) in order to study the optical properties such as reflectance, Energy gap of allowed direct transition, extinction coefficient refractive index, and dielectric constant in real and imagery parts all as a function of wavelength. It was found that all the investigated parameters affect by the doping ratios.
Background: Determination of local bone mineral density (BMD) immediately after implant insertion play an important role in implant success rate, may offer comprehensive description of the bone, and give enough information to the surgeon prior to implant insertion and at follow up status. The aim of the present study is to evaluate the changes of local bone density in the dental implant recipient sites by using computerized tomography. Material and method: The sample consisted of (20) dental implants recipient sites, bone density assessment was done twice, immediately after implants insertion and after six months. Results: The mean HU of the bone around the implant insertion site, immediately after implant placement was 552.28 HU, and inc
... Show MoreThis research presents and discuss the results of experimental investigation carried out on geogrids model to study the behavior of geogrid in the loose sandy soil. The effect of location eccentricity, depth of first layer of reinforcement, vertical spacing, number and type of reinforcement layers have been investigated. The results indicated that the percentage of bearing improvement a bout (22 %) at number of reinforced layers N=1 and about (47.5%) at number of reinforced layers N=2 for different Eccentricity values when depth ratio and vertical spacing between layers are (0.5B and 0.75B) respectively
Spray pyrolysis technique (SPT) is employed to synthesize cadmium oxide nanostructure with 3% and 5% Cobalt concentrations. Films are deposited on a glass substrate at 350 ᵒC with 150 nm thickness. The XRD analysis revealed a polycrystalline nature with cubic structure and (111) preferred orientation. Structural parameters represent lattice spacing, crystallite size, lattice parameter and dislocation density. Homogeneous surfaces and regular distribution of atoms were showed by atomic force microscope (AFM) with 1.03 nm average roughness and 1.22 nm root mean square roughness. Optical properties illustrated a high transmittance more than 85% in the range of visible spectrum and decreased with Co concentration increasing. The absorption
... Show MoreZinc sulfide (ZnS) thin films were deposited on glass substrates using pulsed laser deposition technique. The laser used is the Q-switched Nd: YAG laser with 1064nm wavelength and 1Hz pulse repetition rate and varying laser energy 700mJ-1000mJ with 25 pulse. The substrate temperature was kept constant at 100°C. The structural, morphological and optical properties of ZnS thin films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer.