In this report Silver doped Tin Sulfide (SnS) thin films with ratio of (0.03) were prepared using thermal evaporation with a vacuum of 4*10-6 mbar on glass with (400) nm thickness and the sample annealing with ( 573K ). The optical constants for the wavelengths in the range (300-900) nm and Hall effect for (SnS and SnS:3% Ag) films are investigated and calculated before and after annealing at 573 K. Transition metal doped SnS thin films the regular absorption 70% in the visible region, the doping level intensification the optical band gap values from 1.5- 2 eV. Silver doped tin sulfide (SnS) its direct optical band gap. Hall Effect results of (SnS and SnS:3% Ag) films show all films were (p-type) electrical conductivity with resistivity of 6.91×101 Ω cm , and both Hall mobility and the carrier concentration varies after doping and annealing. Hole concentration increase from 3.7 ×1013 to 2.94 ×1014 cm–3 and hole mobility of 2.42×103 cm2/(V s). Doping with Ag lead to properties with characteristics suitable for solar cell application
Copper and Zinc powders with different particle sizes were subjected to sieving of range (20-100?m) and He-Ne laser system to determine the particle size . 1wt% from each powders was blended carefully with 99wt% from Iraqi oil . Microscopic examination were carried for all samples to reveal the particle size distribution . XRF intensity measurements were conducted for all suspended samples , and the relation between XRF intensity and the particle size was found .
The effect of the concentration of the colloidal nanomaterial on their optical limiting behavior is reported in this paper. The colloids of sliver nanoparticles in deionized water were chemically prepared for the two concentrations (31 ppm and 11ppm). Two cw lasers (473 nm Blue DPSS laser and 532 nm Nd:YAG laser) are used to compare the optical limiting performance for the samples. UV–visible spectrophotometer, transmission electron microscope (TEM) and Fourier Transformation Infrared Spectrometer (FTIR) were used to obtain the characteristics of the sample. The nonlinear refractive index was calculated to be in the order of 10-9 cm2/W. The results demonstrate that the observed limiting response is significant for 532nm. In addition, t
... Show MoreIt is shown that pure and 3% boron doped a-Si0.1Ge0.9:H and a-Si0.1Ge0.9:N thin films
could be prepared by flash evaporation processes. The hydrogenation and nitrogenation
are very successful in situ after depositing the films. The FT-IR analysis gave all the
known absorbing bonds of hydrogen and nitrogen with Si and Ge.
Our data showed a considerable effect of annealing temperature on the structural and
optical properties of the prepared films. The optical energy gap (Eopt.) of a-Si0.1Ge0.9
samples showed to have significant increase with annealing temperature (Ta) also the
refractive index and the real part of dielectric constant increases with Ta, however the
extinction coefficient and imaginary part of dielect
This study looked at how the synthetic chitosan-AgNPs-Doxorubicin-folic acid combination affected the A549 cell line in terms of cytotoxicity and anticancer activity. By reducing silver nitrate (AgNO3) and biodegradable chitosan, silver nanoparticles were biosynthesized. The produced conjugate was examined by using FT-IR spectroscopy, atomic force microscopy (AFM), and field emission scanning electron microscopy (FE-SEM). The cytotoxicity assay for the viability of A549 cells revealed that the combination of chitosan, AgNPs, doxorubicin, and folic acid decrease cell viability in a dose-determined by method over 48 hours, which direct to a dependent reduce in the activity of A549 cells. The mechanism analysis of the impacted living cells lea
... Show MoreIn this research we prepared CdS thin films by Spray pyrolysis method on a glass substrates and we study its structural , optical , electrical properties .The result of (X-Ray ) diffraction showed that all thin films have a polycrystalline structure , The relation of the transmission as a function of wavelength for the CdS films had been studied , The investigated of direct energy gap of the CdS its value is (2.83 eV). In Hall effect measurement of the CdS we find the charge carriers is p – type and Hall coefficient 1157.33(cm3/c) ,Hall mobility 6.77(cm2/v.s)
The enhancement of ZnSe/Si Heterojunction by adding some elements (V, In and Cu) as impurities is the main goal because they contribute to the manufacturing of renewable energy equipment, such as solar cells. This paper describes the preparation of thin films ZnSe with V, In and Cu doped using thermal evaporation method with a vacuum of 10–5 Torr. The thin film was obtained from this work could be applied in heterojunction solar cell because of several advantages including high absorption coefficient value and direct band gap. The samples prepared on a glass and n-type Si wafer substrate. These films have been annealed for 1 h in 450 K. X-ray diffraction XRD results indicated that ZnSe thin film possesses poly-crystalline structure after
... Show MoreAgInSe2 (AIS) thin films solar cell involving of n-type AgInSe2 and Si of p-type substrate by using thermal evaporation method. The influence of annealing of the preparation AgInSe2 were considered to find the best properties of solar device. Thin film AIS have been deposited under the vacuum of 1.5*10-6 Torr with (400) nm thickness at R.T and annealing temperatures (473,573) K. Polycrystalline tetragonal structure for AIS thin films from XRD and increasing of surface roughness from AFM, energy gap values decreasing with increasing annealing temperatures, all films were negative type, I-V characteristics show increasing of efficiency with increasing of annealing temperatures.
Effect of [Cu/In] ratio on the optical properties of CuInS2 thin films prepared by chemical spray pyrolysis on glass slides at 300oC was studied. The optical characteristics of the prepared thin films have been investigated using UV-VIS spectrophotometer in the wavelength range (300-1100 nm). The films have a direct allow electronic transition with optical energy gap (Eg) decreased from 1.51 eV to 1.30 eV with increasing of [Cu/In] ratio and as well as we notice that films have different behavior when annealed the films in the temperature 100oC (1h,2h), 200oC (1h,2h) for [Cu/In]=1.4 . Also the extinction coefficient (k), refractive index (n) and the real and imaginary dielectric constants (ε1, ε2) have been investigated