Non-steroidal anti-inflammatory drugs (NSAIDs) contain free –COOH which thought to be responsible for the GI irritation associated with all traditional NSAIDs. The esterification of this group is one of an approach to ultimate aim for reduce the gastric irritation; so in this study we synthesized and preliminarily evaluated new ester compounds as new analogues with expected selectivity toward COX-2 enzyme. Synthetic procedures have been successfully developed for the generation of the target compounds (III a and b). The synthetic approach involved multi-steps procedures which include: Synthesis of 4-hydroxy benzene sulphonamide ( I b ), synthesis of Naproxen and Ibuprofen acyl chloride and then reacting them with 4-hydroxy benzene sulphonamide to form final compounds ( III a-b) .The structures of these compounds were identified and characterized using (TLC), infrared spectroscopy (FT-IR), 1H NMR data and microanalysis (CHN).Pharmacological study as anti-inflammatory activities for the final compounds were studied in rats by induced edema type of inflammation. Moreover, the results of a docking study of compounds III a-b into the COX-2 binding site revealed that its mechanism was possibly similar to that of naproxen, a COX-2 inhibitor. The effect of them on COX-2 antibody was showed it could significantly inhibit COX-2 activity.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are drugs that help reduce inflammation, which often helps to relieve pain. In this research new ibuprofen oxothiazolidnone derivatives were synthesized from the reaction of Schiff base derivatives of Ibuprofen with mercapto acetic acid VI a-c, to improve the potency and to decrease the drug's potential side effects, a new series of 4-thiazolidinone derivatives of ibuprofen was synthesized VI a-c . The characterizations of the compounds were identified by using FTIR, 1HNMR technique and by measuring the physical properties.
This study focused on the biological synthesis of silver nanoparticles (AgNPs), using prodigiosin pigment produced by Serratia marcescens. The effect of parameters such as pH, temperature, time, with various concentrations of silver nitrate (AgNO3) and prodigiosin on the synthesis of AgNPs were also studied. Optimized results of the biosynthesis process revealed an increase in the intensity of Surface Plasmon Resonance (SPR) bands of nanoparticles with shifting at the wavelength of 400 nm. In addition, optimum synthesis of AgNPs was achieved at pH 12, temperature 55℃, and reaction time 24 h, with concentrations of prodigiosin, as a reducing agent, of 12.5 µg/ml and silver ion concentration of 1 mM. Measuremen
... Show MoreThree Schiff bases from Benzaldehyde and Salicylaldehyde have been synthesized (A, 1and 2) and two of them (1and 2) have been tested for anti-inflammatory activity. The p-aminobenzene sulfonamide has been synthesized from acetanilide through the addition of excess chlorosulfonic acid then concentrated ammonia solution; Schiff base of this derivative (2) exhibited good level of activity against egg-white induced edema in rat hind paw, while the other tested derivative exhibited no activity.
Key words: Schiff bases, sulfonamide derivatives, salicylaldehyde
A Schiff base ligand (L) was synthesized via condensation of
Vitamin K is a fundamental enzymatic co-factor implicated in the carboxylation of several vitamin K dependent proteins involved in the pathogenesis of certain age – related diseases. Inflammation is realized as an important factor in such diseases. Vitamin K is recognized to play an anti-inflammatory behavior that is distinct of its action as an enzymatic co- factor by suppressing many signaling pathways mainly the nuclear factor κB (NF-κB) signal transduction pathway. As well as to play a role as an antioxidant versus the generation of reactive oxidative species (ROS). The purpose of this review is to focus on the protective function of vitamin K as an anti-inflammatory agent
... Show MoreNew 2-Mercaptobenzimidazole derivatives were synthesized. 4,5-disubsitituted 1,2,4-Triazole compounds 1b-2c were synthesized from 2-(benzylthio) benzimidazole compound a, which was then reacted with (NaH) in dioxane at a temperature of (0-5 C°) to produce the salt of compound a. Then the salt was reacted with ethyl chloro acetate to yield Ethyl 2-(benzylthio) benzimidazole acetate compound b. Compound b was converted to triazole derivatives by two pathways. The first pathway was reacting compound b with semicarbazide, thiosemicarbazide and phenylsemicarbazide in DMSO as a solvent to gain compounds 1b-3b, which were then
... Show MoreNew series of 4,4'-((2-(Aryl)-1H-benzo[d]imidazole1,3(2H)-diyl)bis(methylene))Diphenol(3a-g) was successfully synthesized from cyclization of the reduction product of bis Schiff bases (2) with aryl aldehydes bearing phenolic hydroxyl in the presence of acetic acid. The structure of these compounds was identified from FT-IR, 1H NMR, 13C NMR and EIMs. The Antioxidant capability was screened by DPPH and FRAP assays. Both assays showed antioxidant capability more than BHT as well. Compounds 3b and 3c showed antioxidant capacity slightly less than ascorbic acid. The docking study for theses compound was carried out as III DNA polymerase inhibitor. The results of docking demonstrated that the increase in hinderances around phenolic hydroxyl for t
... Show MoreNew series of 4,4'-((2-(Aryl)-1H-benzo[d]imidazole-1,3(2H)-diyl)bis(methylene))Diphenol(3a-g) was successfully synthesized from cyclization of the reduction product of bis Schiff bases (2) with aryl aldehydes bearing phenolic hydroxyl in the presence of acetic acid. The structure of these compounds was identified from FT-IR, 1H NMR, 13C NMR and EIMs. The Antioxidant capability was screened by DPPH and FRAP assays. Both assays showed antioxidant capability more than BHT as well. Compounds 3b and 3c showed antioxidant capacity slightly less than ascorbic acid. The docking study for theses compound was carried out as III DNA polymerase inhibitor. The results of docking demonstrated that the increase in hinderances around phenolic hydr
... Show More