Non-steroidal anti-inflammatory drugs (NSAIDs) contain free –COOH which thought to be responsible for the GI irritation associated with all traditional NSAIDs. The esterification of this group is one of an approach to ultimate aim for reduce the gastric irritation; so in this study we synthesized and preliminarily evaluated new ester compounds as new analogues with expected selectivity toward COX-2 enzyme. Synthetic procedures have been successfully developed for the generation of the target compounds (III a and b). The synthetic approach involved multi-steps procedures which include: Synthesis of 4-hydroxy benzene sulphonamide ( I b ), synthesis of Naproxen and Ibuprofen acyl chloride and then reacting them with 4-hydroxy benzene sulphonamide to form final compounds ( III a-b) .The structures of these compounds were identified and characterized using (TLC), infrared spectroscopy (FT-IR), 1H NMR data and microanalysis (CHN).Pharmacological study as anti-inflammatory activities for the final compounds were studied in rats by induced edema type of inflammation. Moreover, the results of a docking study of compounds III a-b into the COX-2 binding site revealed that its mechanism was possibly similar to that of naproxen, a COX-2 inhibitor. The effect of them on COX-2 antibody was showed it could significantly inhibit COX-2 activity.
The multi-dentate Schiff base ligand (H2L), where H2L=2,2'-(((1,3,5,6)-1-(3-((l1-oxidaneyl)-l5-methyl)-4-hydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)hepta-1,6-di ene-3,5-diylidene)bis(azaneylylidene))bis(3-(4-hydroxyphenyl)propanoic acid), has been prepared from curcumin and L- Tyrosine amino acid. The synthesized Schiff base ligand (H2L) and the second ligand 1,10-phenanthroline (phen) are used to prepare the new complexes [Al(L)(phen)]Cl, K[Ag(L)(phen)] and [Pb(L)(phen)]. The synthesized compounds are characterized by magnetic susceptibility measurements, micro elemental analysis (C.H.N), mass spectrometry, molar conductance, FT-infrared, UV-visible, atomic absorption (AA), 13C-NMR, and 1H-NMR spectral studies. The characterization of the
... Show MoreFe, Co and Sb nanopowders were fruitfully prepared by electrical wire explosion method in Double distilled and de-ionized water (DDDW) media. The formation of iron, cobalt and antimony (FeCoSb) alloy nanopowder was monitored by X-ray diffraction. The x-ray diffraction pattern indicates that there are iron, cobalt and antimony peaks. Optical properties of this alloy nanoparticles were characterized by UV-Visible absorption spectra. The absorption peak position is shifted to the lower wavelengths when the current increases. That means the mean size of the nanoparticles controlled by changing the magnitude of the current. The surface morphological analysis is carried out by employing Scanning Electron Microscope (SEM). Particles with varies
... Show MoreWith the narratives and sayings in the biography of the Prophet and the science of the Koran, Orientalists used this case as a pretext to distort the biography of the Prophet and his character and patience for his call. Researcher in the folds of his research.
In the present work polymer electrolytes were formulated using the solvent casting technique. Under special conditions, the electrolyte content was of fixed ratio of polyvinylpyrolidone (PVP): polyacrylonitrile (PAN) (25:75), ethylene carbonate (EC) and propylene carbonate (PC) (1:1) with 10% of potassium iodide (KI) and iodine I2 = 10% by weight of KI. The conductivity was increased with the addition of ZnO nanoparticles. It is also increased with the temperature increase within the range (293 to 343 K). The conductivity reaches maximum value of about (0.0296 S.cm-1) with (0.25 g) ZnO. The results of FTIR for blend electrolytes indicated a significant degree of interaction between the polymer blend (PVP and PAN)
... Show More