This study aims to evaluate and compare the cytotoxicity and biocompatibility of a modified heat-cured acrylic denture base material containing 15% phosphoric acid 2-hydroxyethyl methacrylate ester (PA2HEME) with those of nonmodified PMMA. Discs with a diameter of 12 mm and a thickness of 2 mm were prepared using a heat-cured PMMA denture base material and divided into control and experimental groups. The experimental group was modified with 15% phosphoric acid 2-hydroxyethyl methacrylate ester (PA2HEME). The modified and nonmodified materials were tested via FTIR, and the effect of modification on surface roughness was evaluated with AFM. An in vitro test was conducted to examine the cytotoxicity and biocompatibility of heat-cured acrylic denture base materials (control and experimental groups) by using a rat embryonic fibroblast cell line (REF). Cell culture viability was estimated with a methyltetrazolium solution cytotoxicity assay. The surface roughness of PA2HEME-modified acrylic resin (mPMMA) was not significantly different from that of nonmodified PMMA acrylic resin. The cytotoxicity test on mPMMA demonstrated no significant change in the cell viability compared with that of the negative control. No deteriorating or inhibitory effect on cell growth was observed after 24 and 72 h. The modification of denture base materials with 15% PA2HEME has no cytotoxic or inhibitory effects on the growth of the studied fibroblast cell line.
Sheets of Epoxy (EP) resin with addition of TiO2 of grain size (1.5μm, and 50nm) and weight percentage (1%, 3%, and 5%) were prepared. Discs of 20mm diameter and 3mm thickness were cut for dielectric measurements. Dielectric properties (dielectric constant, dispassion factor and electrical conductivity) over the frequency range 102 -106 Hz were measured.
Comparison was made between the effect of micro and nano particles of TiO2 on the dielectric properties of EP composites with different weight percentage. Epoxy composites with micro sized particles of TiO2 were observed to have the better values of dielectric properties.
Objective: To identify of the effect of the different concentrations of the special liquid (for mixing the investment, Gilvest)
and mixed with water/powder ratio on setting time of phosphate–bonded investment.
Method and materials: The present study is (60) specimens made from phosphate bonded investment divided into (4)
groups (control and experimental groups), (15) specimens for each group. The Gillmore needle device is used to setting
time of phosphate bonded investment mixed with different concentration of Gilvest and water.
Results: Showed that there is a high significant difference (P<0.01) between each groups in the ANOVA test and a
significant difference (P<0.05) between the group (A) and control group i
n-Hexane conversion enhancement was studied by adding TCE (Trichloro-ethylene) on feed stream using 0.3%Pt/HY zeolite catalyst. All experiments were achieved at atmospheric pressure and on a continuous laboratory unit with a fixed bed reactor at a temperature range 240-270◦C, LHSV 1-3h-1, H2/nC6 mole ratio 1-4.
By adding 435 ppm of TCE, 49.5 mole% conversion was achieved at LHSV 1h-1, temperature of 270ºC and H2/nC6 mole ratio of 4, while the conversion was 18.3 mol% on the same catalyst without adding TCE at the same conditions. The activation energy decreased from 98.18 for pure Pt/HY zeolite to 82.83 kJ/mole by adding TCE. Beside enhancement the activity, selectivity and product distribution enhanced by providing DMB (Dimethyl b
Suggested in this study the introduction of monomers have the ability to interact with polyester Rzn way confused or Alchapak Vodev polycarbonate first Almiaal acrylate ????? grains and offered models for high temperature and for a period of time of 40 days and absorbance and penetration and after color changes resulting from the storage heat higher using shades where models were extractedthermal storage and take measurements and then returned periodically results were consistent with theoretical expectations and mixing
Porcelain is one of the most important ceramic materials with a wide range of traditional and technical applications. Since most mixtures of porcelain have a high sintering temperature, bentonite has been added in this research to improve the characteristics of sintering and burning. The porcelain mixture consisted of the following Iraqi raw materials: 30% wt kaolin, 30 wt% non-plastic clay (grog), 10% wt sodium feldspar, 10 wt% potassium feldspar and 20 wt% flint. After the mechanical mixing process and transfer the powder mixture to the slurry by adding distilled water, then different weight percentage of the sodium bentonite(0, 2.5, 5, 7.5 and 10) wt% was added. The specimens were prepared by using the solid casting m
... Show MoreDifferent percents(1.0,2.5,5.0 and 10)wt%of MgO powders were added to ZnO powder to study their effects on the physical properties of ZnO.Density, porpsity and water absorption of ZnO were decreased as MgO weigth percentage content increased. The values of vickers hardneess have double values especially at 1.0 wt % of MgO.
Background: Osteoarthritis is the most common joint disorder. Treatment is usually limited to short term symptom relived and is by no means satisfactory.
The work concerned with studying the effect of (SiO2) addition as a
filler on the adhesive properties of (PVA). Samples were prepared as
sheets by using casting method. The mechanical properties showed
that increase in tensile strength from (34MPa) to (68MPa) when
(SiO2) added to (PVA). The adhesive strength showed that joint
properties depend upon specific adhesive characteristic of material
(PVA) and (SiO2\PVA)composites at different concentrations (1.5%,
2.5%, 3.5%, 4.5wt%), the cohesive strength of the adhesive material,
the joint design, and adherent type (Sponge Rubber(SR), Natural
leather (NL), Vulcanized Rubber(VR), and Cartoon). The results
proved the tensile strength increased with (SiO2) ratio, so