Shatt Al-Hilla was considered one of the important branches of Euphrates River that supplies irrigation water to millions of dunams of planted areas. It is important to control the velocity and water level along the river to maintain the required level for easily diverting water to the branches located along the river. So, in this research, a numerical model was developed to simulate the gradually varied unsteady flow in Shatt AL-Hilla. The present study aims to solve the continuity and momentum (Saint-Venant) equations numerically to predict the hydraulic characteristics in the river using Galerkin finite element method. A computer program was designed and built using the programming language FORTRAN-77. Fifty kilometers was considered starting from downstream of Hindiyah Barrage towards Hilla City. The gathered field measurements along different periods were used for the purpose of calibration and verification of the model. The results show that the suitable Manning roughness was 0.023. A comparison with field observations was conducted to identify the validity of the numerical solution of the flow equations. The obtained results indicate the feasibility of the numerical techniques using a weighting factor of 0.667 and a time increment of 6 hr. High accuracy and good agreement were achieved, and minimum Root Mean Square Error (RMSE) of 0.029 was gained for the obtained results compared with the corresponding field observations.
In this paper, the delay integral equations in population growth will be described,discussed , studied and transfered this model to integro-differential equation. At last,we will solve this problem by using variational approach.
In this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.
This paper is concerned with the oscillation of all solutions of the n-th order delay differential equation . The necessary and sufficient conditions for oscillatory solutions are obtained and other conditions for nonoscillatory solution to converge to zero are established.
In any natural area or water body, evapotranspiration is one of the important outcomes in the water balance equation. As a significant method and depending on monthly average temperature, estimating of potential Evapotranspiration depending on Thornthwaite method was adopted in this research review. Estimate and discuss evapotranspiration by using Thornthwaite method is the main objectives of this research review with considerable details as well as compute potential evapotranspiration based on climatologically data obtained in Iraq. Temperature - evapotranspiration relationship can be estimated between those two parameters to reduce cost and time and facilitate calculation of water balance in lakes, river, and h
... Show MoreUntreated municipal solid waste (MSW) release onto land is prevalent in developing countries. To reduce the high levels of harmful components in polluted soils, a proper evaluation of heavy metal concentrations in Erbil's Kani Qrzhala dump between August 2021 and February 2022 is required. The purpose of this research was to examine the impact of improper solid waste disposal on soil properties within a landfill by assessing the risks of contamination for eight heavy elements in two separate layers of the soil by using geoaccumulation index (I-geo) and pollution load index (PLI) supported. The ArcGIS software was employed to map the spatial distribution of heavy element pollution and potential ecological risks. The I-geo values in summe
... Show MoreIn this paper, we use the repeated corrected Simpson's 3/8 quadrature method for obtaining the numerical solutions of Fredholm linear integral equations of the second kind. This method is more accurately than the repeated corrected Trapezoidal method and the repeated Simpson's 3/8 method. To illustrate the accuracy of this method, we give a numerical example
Many of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem
... Show MoreThis paper examines a new nonlinear system of multiple integro-differential equations containing symmetric matrices with impulsive actions. The numerical-analytic method of ordinary differential equations and Banach fixed point theorem are used to study the existence, uniqueness and stability of periodic solutions of impulsive integro-differential equations with piecewise continuous functions. This study is based on the Hölder condition in which the ordering , and are real numbers between 0 and 1.
The quality of groundwater is just as important as its quantity. The kinds and concentration of salts in groundwater depend on the environment, movement, and the source of the groundwater. During the field work, 20 samples have been collected from water wells from Al-Salman basin for two seasons represent wet and dry seasons in November 2017 and April 2018. After water well samples have been analyzed the Electrical conductivity values range from (2260 to 5500) μS/cm for dry season and range from (2540 to 5630) μS/cm for wet season, the Total dissolved solids values range from (1289 to 3582) ppm for dry season and range from (1710 to 3960) ppm for wet season, and pH values range from (7.11 to 7.3) for dry and wet seasons. The Hydroc
... Show MoreThe goal of this research is to develop a numerical model that can be used to simulate the sedimentation process under two scenarios: first, the flocculation unit is on duty, and second, the flocculation unit is out of commission. The general equation of flow and sediment transport were solved using the finite difference method, then coded using Matlab software. The result of this study was: the difference in removal efficiency between the coded model and operational model for each particle size dataset was very close, with a difference value of +3.01%, indicating that the model can be used to predict the removal efficiency of a rectangular sedimentation basin. The study also revealed