Preferred Language
Articles
/
_BYxVYcBVTCNdQwCykVK
Finite Element Modeling Of Saint-Venant Equations For Shatt-Al Hilla
...Show More Authors

Shatt Al-Hilla was considered one of the important branches of Euphrates River that supplies irrigation water to millions of dunams of planted areas. It is important to control the velocity and water level along the river to maintain the required level for easily diverting water to the branches located along the river. So, in this research, a numerical model was developed to simulate the gradually varied unsteady flow in Shatt AL-Hilla. The present study aims to solve the continuity and momentum (Saint-Venant) equations numerically to predict the hydraulic characteristics in the river using Galerkin finite element method. A computer program was designed and built using the programming language FORTRAN-77. Fifty kilometers was considered starting from downstream of Hindiyah Barrage towards Hilla City. The gathered field measurements along different periods were used for the purpose of calibration and verification of the model. The results show that the suitable Manning roughness was 0.023. A comparison with field observations was conducted to identify the validity of the numerical solution of the flow equations. The obtained results indicate the feasibility of the numerical techniques using a weighting factor of 0.667 and a time increment of 6 hr. High accuracy and good agreement were achieved, and minimum Root Mean Square Error (RMSE) of 0.029 was gained for the obtained results compared with the corresponding field observations.

Crossref
View Publication
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
An Algorithm for nth Order Intgro-Differential Equations by Using Hermite Wavelets Functions
...Show More Authors

In this paper, the construction of Hermite wavelets functions and their operational matrix of integration is presented. The Hermite wavelets method is applied to solve nth order Volterra integro diferential equations (VIDE) by expanding the unknown functions, as series in terms of Hermite wavelets with unknown coefficients. Finally, two examples are given

View Publication Preview PDF
Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Proceedings Of First International Conference On Mathematical Modeling And Computational Science: Icmmcs 2020
Study the Stability for Ordinary Differential Equations Using New Techniques via Numerical Methods
...Show More Authors

Nonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though

... Show More
Scopus (8)
Scopus
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Computational Science
Novel approximate solution for fractional differential equations by the optimal variational iteration method
...Show More Authors

Crossref (23)
Clarivate Crossref
Publication Date
Thu Aug 30 2018
Journal Name
Iraqi Journal Of Science
Symmetrical Fibonacci and Lucas Wave Solutions for Some Nonlinear Equations in Higher Dimensions
...Show More Authors

We consider some nonlinear partial differential equations in higher dimensions, the negative order of the Calogero-Bogoyavelnskii-Schiff (nCBS) equationin (2+1) dimensions, the combined of the Calogero-Bogoyavelnskii-Schiff equation and the negative order of the Calogero-Bogoyavelnskii-Schiff equation (CBS-nCBS) in (2+1) dimensions, and two models of the negative order Korteweg de Vries (nKdV) equations in (3+1) dimensions. We show that these equations can be reduced to the  same class of ordinary differential equations via wave reduction variable. Solutions in terms of symmetrical Fibonacci and Lucas functions are presented by implementation of the modified Kudryashov method.

View Publication Preview PDF
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of The College Of Languages (jcl)
Entre l'Emile de Jean-Jacques Rousseau et Paul et Virginie de Bernardin de Saint Pierre : un refus constant de la civilisation :
...Show More Authors

A la fin du XVIIIe siècle, les penseurs français dont Rousseau et Saint-Pierre, commencent à mettre en question la civilisation européenne. Dans leurs œuvres les plus importantes, ces deux auteurs parlent de la société européenne d'une façon très banale. Ils font, par contre, une invitation à la Solitude et l'isolement dans la nature afin d'éviter la corruption de l'âme par la société mondaine. Ces écrivains-penseurs croient que la société peut gâter l'humanité de l'individu. Ils suggèrent à travers les images innocentes de leurs principaux personnages vivant dans la campagne, un monde idéal où il n'y a que pureté et chasteté.  Dans les deux œuvres que nous avons choisies (Paul et Virginie de Bernardin de

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Modeling and analysis of thermal contrast based on LST algorithm for Baghdad city
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
A Viscoplastic Modeling for Permanent Deformation Prediction of Rubberized and Conventional Mix Asphalt
...Show More Authors

View Publication
Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Improved High order Euler Method for Numerical Solution of Initial value Time- Lag Differential Equations
...Show More Authors

The goal of this paper is to expose a new numerical method for solving initial value time-lag of delay differential equations by employing a high order improving formula of Euler method known as third order Euler method. Stability condition is discussed in detail for the proposed technique. Finally some examples are illustrated to verify the validity, efficiency and accuracy of the method.

View Publication Preview PDF
Publication Date
Mon Nov 19 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Study of Two Types Finite Graphs in KU-Semigroups
...Show More Authors

In this ˑwork, we present theˑ notion of the ˑgraph for a KU-semigroup as theˑundirected simple graphˑ with the vertices are the elementsˑ of and weˑˑstudy the ˑgraph ofˑ equivalence classesˑofˑ which is determinedˑ by theˑ definition equivalenceˑ relation ofˑ these verticesˑ, andˑ then some related ˑproperties areˑ given. Several examples are presented and some theorems are proved. Byˑ usingˑ the definitionˑ ofˑ isomorphicˑ graph, ˑwe showˑ thatˑ the graphˑ of equivalence ˑclasses ˑand the ˑgraphˑof ˑa KU-semigroup ˑ areˑ theˑ sameˑ, in special cases.

Publication Date
Thu Sep 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
PREDICTION OF FINITE CONCENTRATIONBEHAVIOR FROM INFINITE DILUTION EGUILIBRIUM DATA
...Show More Authors

Experimental activity coefficients at infinite dilution are particularly useful for calculating the parameters needed in an expression for the excess Gibbs energy. If reliable values of γ∞1 and γ∞2 are available, either from direct experiment or from a correlation, it is possible to predict the composition of the azeotrope and vapor-liquid equilibrium over the entire range of composition. These can be used to evaluate two adjustable constants in any desired expression for G E. In this study MOSCED model and SPACE model are two different methods were used to calculate γ∞1 and γ∞2

View Publication Preview PDF