Preferred Language
Articles
/
_4bxqIYBIXToZYALjaKh
Combination of the artificial neural network and advection-dispersion equation for modeling of methylene blue dye removal from aqueous solution using olive stones as reactive bed

Scopus Clarivate Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Emulsion Liquid Membrane for Pesticides Removal from Aqueous Solution: Emulsion Stability, Extraction Efficiency and Mass Transfer Studies

The current study investigated the stability and the extraction efficiency of emulsion liquid membrane (ELM) for Abamectin pesticide removal from aqueous solution. The stability was investigated in terms of droplet emulsion size distribution and emulsion breakage percent. The proposed ELM included a mixture of corn oil and kerosene (1:1) as a diluent, Span 80 (sorbitan monooleate) as a surfactant and hydrochloric acid (HCl) as a stripping agent without utilizing a carrier agent. Parameters such as homogenizer speed, surfactant concentration, emulsification time and internal to organic volume ratio (I/O) were evaluated. Results show that the lower droplet size of 0.9 µm and higher stable emulsion in terms of breakage percent of 1.12 % we

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Removal of Methyl Orange from Aqueous Solutions by Adsorption Using Corn Leaves as Adsorbent Material

A comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leav

... Show More
Crossref (16)
Crossref
View Publication Preview PDF
Publication Date
Sun May 01 2022
Journal Name
International Journal Of Multiphase Flow
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Modeling of Corrosion Rate Under Two Phase Flow in Horizontal Pipe Using Neural Network

The present study develops an artificial neural network (ANN) to model an analysis and a simulation of the correlation between the average corrosion rate carbon steel and the effective parameter Reynolds number (Re), water concentration (Wc) % temperature (T o) with constant of PH 7 . The water, produced fom oil in Kirkuk oil field in Iraq from well no. k184-Depth2200ft., has been used as a corrosive media and specimen area (400 mm2) for the materials that were used as low carbon steel pipe. The pipes are supplied by Doura Refinery . The used flow system is all made of Q.V.F glass, and the circulation of the two –phase (liquid – liquid ) is affected using a Q.V.F pump .The input parameters of the model consists of Reynolds number , w

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
DYNAMIC MODELING FOR DISCRETE SURVIVAL DATA BY USING ARTIFICIAL NEURAL NETWORKS AND ITERATIVELY WEIGHTED KALMAN FILTER SMOOTHING WITH COMPARISON

Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re

... Show More
Scopus (1)
Scopus
Preview PDF
Publication Date
Tue Jun 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Reuse of Brick Waste as a Cheap-Sorbent for the Removal of Nickel Ions from Aqueous Solutions

   The potential application of granules of brick waste (GBW) as a low-cost sorbent for removal of Ni+2ions from aqueous solutions has been studied. The properties of GBW were determined through several tests such as X-Ray diffraction (XRD), Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM), and BET surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of nickel (39.4%) were 1.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The adsorption data obtained by batch experiments subjected to the Three i

... Show More
Crossref (7)
Crossref
View Publication Preview PDF
Publication Date
Fri Aug 27 2021
Journal Name
Human Interaction, Emerging Technologies And Future Systems V: Proceedings Of The 5th International Virtual Conference On Human Interaction And Emerging Technologies, Ihiet 2021, August 27-29, 2021 And The 6th Ihiet: Future Systems (ihiet-fs 2021), October 28-30, 2021, France
Scopus (4)
Scopus
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
Smart Doctor: Performance of Supervised ART-I Artificial Neural Network for Breast Cancer Diagnoses

Wisconsin Breast Cancer Dataset (WBCD) was employed to show the performance of the Adaptive Resonance Theory (ART), specifically the supervised ART-I Artificial Neural Network (ANN), to build a breast cancer diagnosis smart system. It was fed with different learning parameters and sets. The best result was achieved when the model was trained with 50% of the data and tested with the remaining 50%. Classification accuracy was compared to other artificial intelligence algorithms, which included fuzzy classifier, MLP-ANN, and SVM. We achieved the highest accuracy with such low learning/testing ratio.

Scopus (5)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue May 01 2018
Journal Name
Journal Of Engineering
Prediction of Municipal Solid Waste Generation Models Using Artificial Neural Network in Baghdad city, Iraq

The importance of Baghdad city as the capital of Iraq and the center of the attention of delegations because of its long history is essential to preserve its environment. This is achieved through the integrated management of municipal solid waste since this is only possible by knowing the quantities produced by the population on a daily basis. This study focused to predicate the amount of municipal solid waste generated in Karkh and Rusafa separately, in addition to the quantity produced in Baghdad, using IBM SPSS 23 software. Results that showed the average generation rates of domestic solid waste in Rusafa side was higher than that of Al-Karkh side because Rusafa side has higher population density than Al-Karkh side. T

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Investigating the Influence of Precursor Concentration on the Photodegradation of Methylene Blue using Biosynthesized ZnO from Pometia pinnata Leaf Extracts

The ZnO nanoparticles were synthesized at various precursor concentrations i.e. 0.05, 0.1, and 0.5 M by biosynthesis method based on Pometia pinnata Leaf Extracts. Initial nanoparticle concentration influenced the optical bandgap, shape, and structure of nanoparticles. The photodegradation process was carried out under UV illumination. The efficiency of MB degradation was determined by measuring the decrease in MB concentration and by analyzing the optical absorption at 663 nm recorded by UV-Vis spectroscopy. Results showed that the biosynthesized ZnO nanoparticles exhibited efficient photodegradation of MB, with a maximum degradation rate of 80% after 90 minutes of exposure to UV-C light. The study highlights the potential of Pometia pi

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF