A mathematical model was proposed to study the microkinetics of esterification reaction of oleic acid with ethanol over prepared HY zeolite catalyst. The catalyst was prepared from Iraqi kaolin source and its properties were characterized by different techniques. The esterification was done under different temperature (40 to 70˚C) with 6:1 for molar ratio of ethanol to oleic acid and 5 % catalyst loading.
The microkinetics study was done over two period of time each period was examined individually to calculate the reaction rate constant and activation energy. The impact of the mass transfer resistance to the reactant was also investigated; two different studies have been accomplished to do this purpose.
&nb
... Show MoreA mathematical model was proposed to study the microkinetics of esterification reaction of oleic acid with ethanol over prepared HY zeolite catalyst. The catalyst was prepared from Iraqi kaolin source and its properties were characterized by different techniques. The esterification was done under different temperature (40 to 70˚C) with 6:1 for molar ratio of ethanol to oleic acid and 5 % catalyst loading. The microkinetics study was done over two period of time each period was examined individually to calculate the reaction rate constant and activation energy. The impact of the mass transfer resistance to the reactant was also investigated; two different studies have been accomplished to do this purpose. The e
... Show MoreThe current study presents the simulative study and evaluation of MANET mobility models over UDP traffic pattern to determine the effects of this traffic pattern on mobility models in MANET which is implemented in NS-2.35 according to various performance metri (Throughput, AED (Average End-2-end Delay), drop packets, NRL (Normalize Routing Load) and PDF (Packet Delivery Fraction)) with various parameters such as different velocities, different environment areas, different number of nodes, different traffic rates, different traffic sources, different pause times and different simulation times . A routing protocol.…was exploited AODV(Adhoc On demand Distance Vector) and RWP (Random Waypoint), GMM (Gauss Markov Model), RPGM (Refere
... Show Moreلمقدمة
الحمد لله رب العالمين والصلاة والسلام على سيد الأنبياء والمرسلين نبينا محمد صلى الله عليه وسلم وعلى واصحابه أجمعين ومن تبعهم وأهتدى بهداهم الى يوم الدين اما بعد :
فوظيفة القضاء وظيفة سامية يراد منها اقامة العدل ولا يستقيم حالهم الا به دفعاّ للظلم ، ولقد اولى النبي صلى الله عليه وآله وسلم ومن بعده الخلفاء الراشدون
... Show MoreExistence of these soils, sometimes with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of gypsum by the action of waterflow through soil mass. In this research, a new technique is adopted to investigate the performance of replacement and geosynthetic reinforcement materials to improve the gypseous soil behavior through experimential set up manufactured loaclally specially for this work. A series of tests were carried out using steel container (600*600*500) mm. A square footing (100*100) mm was placed at the center of the top surface of the bed soil. The results showed that the most effective thickness for the dune sand layer with geotextile at the interface, within
... Show MoreBiomass is a popular renewable carbon source because it has a lot of potential as a substitute for scarce fossil fuels and has been used to make essential compounds like 5-hydroxymethylfurfural (HMF). One of the main components of biomass, glucose, has been extensively studied as a precursor for the production of HMF. Several efforts have been made to find efficient and repeatable procedures for the synthesis of HMF, a chemical platform used in the manufacturing of fuels and other high-value compounds. Sulfonated graphite (SG) was produced from spent dry batteries and utilized as a catalyst to convert glucose to 5-hydroxymethylfurfural (HMF). Temperature, reaction time, and catalyst loading were the variables studied. When dimethyl sulfo
... Show MoreWe demonstrate that the selective hydrogenation of acetylene depends on energy profile of the partial and full hydrogenation routes and the thermodynamic stability of adsorbed C2H2 in comparison to C2H4.