This paper deals with the Magnetohydrodynyamic (Mill)) flow for a viscoclastic fluid of the generalized Oldroyd-B model. The fractional calculus approach is used to establish the constitutive relationship of the non-Newtonian fluid model. Exact analytic solutions for the velocity and shear stress fields in terms of the Fox H-function are obtained by using discrete Laplace transform. The effect of different parameter that controlled the motion and shear stress equations are studied through plotting using the MATHEMATICA-8 software.
The prediction of the blood flow through an axisymmetric arterial stenosis is one of the most important aspects to be considered during the Atherosclrosis. Since the blood is specified as a non-Newtonian flow, therefore the effect of fluid types and effect of rheological properties of non-Newtonian fluid on the degree of stenosis have been studied. The motion equations are written in vorticity-stream function formulation and solved numerically. A comparison is made between a Newtonian and non-Newtonian fluid for blood flow at different velocities, viscosity and Reynolds number were solved also. It is found that the properties of blood must be at a certain range to preventing atheroscirasis
In this research, non-thermal plasma system of argon gas is designed to work at normal atmospheric pressure and suitable for work in medical and biotechnological applications. This technique is applied in the treatment of the Staphylococcus epidermidis bacteria and show the role of the flow rate of Argon gas on the killing rate of bacteria, and it obtained a 100 % killing rate during the time of 5 minutes at the flow Argon gas of 5 liters/ min.
This work represents study the rock facies and flow unit classification for the Mishrif carbonate reservoir in Buzurgan oil Field, which located n the south eastern Iraq, using wire line logs, core samples and petrophysical data (log porosity and core permeability). Hydraulic flow units were identified using flow zone indicator approach and assessed within each rock type to reach better understanding of the controlling role of pore types and geometry in reservoir quality variations. Additionally, distribution of sedimentary facies and Rock Fabric Number along with porosity and permeability was analyzed in three wells (BU-1, BU-2, and BU-3). The interactive Petrophysics - IP software is used to assess the rock fabric number, flow zon
... Show MoreThe aim of this study is to investigate the kinetics of copper removal from aqueous solutions using an electromembrane extraction (EME) system. To achieve this, a unique electrochemical cell design was adopted comprising two glass chambers, a supported liquid membrane (SLM), a graphite anode, and a stainless-steel cathode. The SLM consisted of a polypropylene flat membrane infused with 1-octanol as a solvent and bis(2-ethylhexyl) phosphate (DEHP) as a carrier. The impact of various factors on the kinetics constant rate was outlined, including the applied voltage, initial pH of the donor phase solution, and initial copper concentration. The results demonstrated a significant influence of the applied voltage on enhancing the rate of c
... Show MoreTwo‐dimensional buoyancy‐induced flow and heat transfer inside a square enclosure partially occupied by copper metallic foam subjected to a symmetric side cooling and constant heat flux bottom heating was tested numerically. Finite Element Method was employed to solve the governing partial differential equations of the flow field and the Local Thermal Equilibrium model was used for the energy equation. The system boundaries were defined as lower heated wall by constant heat flux, cooled lateral walls, and insulated top wall. The three parameters elected to conduct the study are heater length (7 ≤
Our aim was to investigate the changes in the myocardium stiffness index for patients suffering from systemic hypertension, and to assess their left ventricular performance. We studied 263 hypertensive patients and 166 healthy subjects as a control group. By using conventional Doppler echocardiography, the following parameters were measured—Left ventricular end diastolic diameter, left ventricular end systolic diameter, transmitral early velocity, isovolumic relaxation time, and isovolumic contraction time. Tissue Doppler imaging (TDI) was used in the measurements of the early mitral annular velocity (Ea) and the diastolic stiffness was obtained by calculating the ratio E\Ea\LVIDd. Index myocardial performance (IMP) was calculated
... Show More