Purpose: Despite the high clinical accuracy of dynamic navigation, inherent sources of error exist. The purpose of this study was to improve the accuracy of dynamic navigated surgical procedures in the edentulous maxilla by identifying the optimal configuration of intra-oral points that results in the lowest possible registration error for direct clinical implementation. Materials and methods: Six different 4-area configurations were tested by 3 operators against positive and negative controls (8-areas and 3-areas, respectively) using a skull model. The two dynamic navigation systems (X-Guide® and NaviDent®) and the two registration methods (bone surface tracing and fiducial markers) produced four registration groups. The accuracy of the registration was checked at the frontal process of the zygoma. Intra- and inter- operator reliability for each registration group were reported. Multiple comparisons were conducted to find the best configuration with the minimum registration error. Results: Ranking revealed one configuration in the tracing groups (Conf.3) and two configurations in the fiducial groups (Conf.3 and Conf.5) that had the best accuracy. When the inferior surfaces of the zygomatic buttress were excluded, fiducial registration produced better accuracy with both systems (p 0.006 and <0.0001). However, tracing 1 cm areas at these surfaces bilaterally resulted in similar registration accuracy as placing fiducial markers there (p 0.430 and 0.237). NaviDent® performed generally better (p 0.049, 0.001 and 0.002) albeit having a wider margin of uncertainty in the obtained values. Changing the distribution of the 4 tracing areas or fiducial markers had a less pronounced effect with X-Guide® than with the NaviDent® system. Conclusion: For edentulous maxillary surgeries, 4 fiducial markers placed according to configuration 3 or 5 result in the lowest registration error. Where implants are being placed bilaterally, an additional 2 sites may reduce the error further. For bilateral zygomatic implant placement, it is optimal to place 2 fiducials on the inferior surfaces of the maxillary tuberosities, other 2 on their buccal surfaces, and 2 on the anterior labial surface of the alveolar bone. Utilising the inferior zygomatic buttress is recommended over the inferior maxillary tuberosities in other types of maxillary surgeries.
A new mixed ligand complexes were prepared by reaction of quinoline -2-carboxylic acid (L1) and 4,4?dimethyl-2,2?-bipyridyl (L2) with V(IV),Cr(III), Rh(III), Cd(II) and Pt(IV) ions. These complexes were isolated and characterized by (FT-IR) and (UV-Vis) spectroscopy, elemental analysis, flame atomic absorption technique, thermogravimetric analysis, in addition to magnetic susceptibility and conductivity measurements. Most complexes were mononuclear and with octahedral geometry, except Cd (II) with tetrahedral geometry, and V (IV) with square pyramidal geometry. A theoretical treatment of the ligands and the prepared complexes in gas phase was done using two programs Hyperchem.8 and Gaussian program (GaussView Currently Available Versions (
... Show MoreMixed ligands reaction of [2-[(3-hydroxyphenyl)diazinyl]-1,2-benzothiazol-3(2H)-one-1,1-dioxide] (H2L, primary ligand) and bipyridyl (secondary ligand) with salts of Cr(III), Mn(II), Fe(III), Co(II) and Ni(II) was performed. A series of air-stable complexes with distinctive octahedral moieties was created by equal molar ratio (1:1:1). The formation of these compounds was verified using detecting analysis techniques incorporating mass spectra, which validated the achieved geometries. Fourier transform infrared (FTIR) analysis demonstrated how the ligands (H2L and bipyridyl) are chelated as tridentate (ONO) and bidentate (NN) groups, respectively and the coordination with the metal ions. Thermal decomposition studies using pyrolysis (
... Show Moreحضرت معقدات كل من الفنادايل, الخارصين, النحاس والكادميوم بتكافؤهم الثنائي والذهب بتكافؤه الثلاثي بأستخدام صبغة ازوجديدة (6،4،2-ثلاثي هيدروكسي-3-((3-هيدروكسي فنيل) ثنائي زينيل ) فنيل ) ايثان-1-اون المحضرة من ملح الديازونيوم مع ٦,٤,٢- ثلاثي هيدروكسي اسيتوفينون بعد عزل (E)-1-(2,4,6-trihydroxy-3-((3-hydroxyphenyl)diazenyl)phenyl)ethan-1-one تم تشخيصها بواسطة الطرق الطيفية المتاحة والتقنيات التشخيصية لكل من التحليل الدقيق للعناصرواطياف كل من ال
... Show MoreThe present work includes the preparation and characterization of{Co(II) , Ni(II), Pd(II), Fe(III) , Ru(III),Rh(III), Os(III) , Ir(III) , Pt(IV) and VO(IV)}complexes of a new ligand 4-[(1-phenyl-2,3-dimethyl-3-pyrozoline-5-one)azo]-N,N-dimethylanline (PAD). The product (PAD) was isolated,studies and characterized by phsical measurements,i.e., (FT-IR), (UV) Spectroscopy and elemental analysis(C.H.N). The prepared complexes were identified and their structural geometric were suggested in solid state by using flame atomic absorption, elemental analysis(C.H.N), (FT-IR) and (UV-Vis) Spectroscopy, as well as magnetic susceptibility and conductivity measurements . The study of the nature of the complexes formed in( ethanolic solution) following t
... Show MoreGlassy carbon electrode (GCE) was modified with carbon nanotubes CNT and C60 by attachment and solution evaporation techniques, respectively. CNT/Li+/GCE and C60/Li+/GCE were prepared by modifying CNT/GCE and C60/GCE in Li+ solution via cyclic voltammetry (CV) potential cycling. The sensing characteristics of the modified film electrodes, demonstrated in this study for interference of Mn2+ in different heavy metals ion esp. Hg2+, Cd2+ and Cu2+. The interfering effect was investigated that exert positive interference on the redox peaks of Mn2+. The modification of GCE with nano materials and Li+ act an enhancement for the redox current peaks to observe the effect of interference for Mn2+ in 1:1 ratio with different heavy metals ion.
New Schiff base and their Mn(II),Co(II),Ni(II), Cu(II) and Hg(II) complexes formed by the condensation of O-phathaldehyde and ethylene diamine (2:1) to give ligand (L1) in the first step ,then the ligand (L1) with 2- aminophenol (1:2) to give ligand (L2) were prepared by classic addition through microwave method . These compounds (Ligands and complexes) have been diagnosed electronic spectra, FT-IR,1H-&13C-NMR (only ligand), magnetic susceptibility, elemental microanalysis and molar conductance measurements. Analytical values displayed that all the complexes appeared (metal: ligand) (1:1) ratio with the six chelation. All the compounds appear a high activity versus four types of bacteria such as; (Escherichia coli), (Sta
... Show MoreIn this study new derivatives of O-[2-{''2-Substituted Aryl (''1,''3,''4 thiadiazolyl) ['3,'4-b]-'1,'2,'4- Triazolyl]-Ethyl]-p- chlorobenzald oxime (6-11)have been synthesized from the starting material p-chloro – E- benzaldoxime 1.Compound 2 was synthesized by the reaction of p-chloro – E- benzaldoxime with ethyl acrylate in basic medium. Refluxing compound 2 with hydrazine hydrate in ethanol absolute afforded 3. Derivative 4 was prepared by the reaction of 3 with carbon disulphide, treated of compound 4 with hydrazine hydrate gave 5. The derivatives (6-11) were prepared by the reaction of 5 with different substitutesof aromatic acids. The structures of these compounds were characterized from their melting points, infrared spectroscopy
... Show MoreCompound 4-(((6-amino-7H-[1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazin-3-yl) methoxy) methyl)-2, 6-dimethoxyphenol (6) was synthesized by multi steps. The corresponding acetonitrile thioalkyl (7) was cyclized by refluxing with acetic acid to afford 4-(((6-amino-7H-[1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazin-3-yl) methoxy) methyl)-2, 6-dimethoxyphenol (8). Two new series of 4-(((6-(3-(4-aryl) thioureido)-7H-[1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazin-3-yl) methoxy) methyl)-2, 6-dimethoxyphenol (9a-c) and of 4-(((6-(substitutedbenzamido) 7H-[1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazin-3-yl) methoxy) methyl)-2, 6-dimethoxyphenol (10a-c) were synthesized as new derivatives for fused 1, 2, 4-trizaole-thiadiazine (8). The antioxidant
... Show MoreCompound 4-(((6-amino-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)methoxy)methyl)- 2,6-dimethoxyphenol (6) was synthesized by multi steps. The corresponding acetonitrile thioalkyl (7) was cyclized by refluxing with acetic acid to afford 4-(((6-amino-7H-[1,2,4]triazolo[3,4- b][1,3,4]thiadiazin-3-yl)methoxy)methyl)-2,6-dimethoxyphenol (8). Two new series of 4-(((6-(3- (4-aryl)thioureido)-7H-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazin-3-yl)methoxy)methyl)-2,6- dimethoxyphenol (9a-c) and of 4-(((6-(substitutedbenzamido)7H-[1,2,4]triazolo[3,4- b][1,3,4]thiadiazin-3-yl)methoxy)methyl)-2,6-dimethoxyphenol (10a-c) were synthesized as new derivatives for fused 1,2,4-trizaole-thiadiazine(8). The antioxidants of newly compounds were evaluated by DPPH
... Show More