This report explores emerging techniques to boost multimedia transfer effectiveness, given the escalating need for improved quality and performance in multimedia interactions. The analysis involves a thorough literature assessment and comparison of present strategies to pinpoint key tendencies and propose novel approaches. The methodology involves examining recent technological enhance ments in video coding standards, quality appraisal methods, and compression tech niques. Specific domains investigated comprise firmware component architectures, 4D indexing structures, and iterative filtering frameworks. The study in addition weighs tradeoffs between video quality, encoding intricacy, and bitrate demands. Key determinations consist of
... Show MoreThe study dealt with measuring the impact of the availability of each of the content elements of the interaction, electronic services, and information on the evaluation of the users of the government website for its effectiveness in terms of the site’s functions and for measuring the site’s ability to present the organization’s tasks to customer groups.
Authority is concerned with measuring the confidence of customers in the content of the site, and in the organization as a whole. Validity is related to measuring the effectiveness of employing the site’s content to achieve the goal of its creation and in communicating with customers. Availability It is for measuring the ease of use of the site. The relevance, which means
... Show MoreThe urban Gentrification is an inclusive global phenomenon to restructure the cities on the overall levels, the research to propose a specific study about the concept of urban Gentrification in the cities and showcasing its, specifications, and results, and how to deal with the variables that occur on cities through improvements as part of urban renewal projects, then the general axis of the research is shrinked, choosing the urban centers as the most important areas that deal with the urban Gentrification process due to its direct connection with indivisuals and social changes, and to process the specific axis of the research theses and studies will be showcased that discuss the topic in different research directions, and emerged
... Show MoreMalware represents one of the dangerous threats to computer security. Dynamic analysis has difficulties in detecting unknown malware. This paper developed an integrated multi – layer detection approach to provide more accuracy in detecting malware. User interface integrated with Virus Total was designed as a first layer which represented a warning system for malware infection, Malware data base within malware samples as a second layer, Cuckoo as a third layer, Bull guard as a fourth layer and IDA pro as a fifth layer. The results showed that the use of fifth layers was better than the use of a single detector without merging. For example, the efficiency of the proposed approach is 100% compared with 18% and 63% of Virus Total and Bel
... Show MorePhotoacoustic is a unique imaging method that combines the absorption contrast of light or radio frequency waves with ultrasound resolution. When the deposition of this energy is sufficiently short, a thermo-elastic expansion takes place whereby acoustic waves are generated. These waves can be recorded and stored to construct an image. This work presents experimental procedure of laser photoacoustic two dimensional imaging to detect tumor embedded within normal tissue. The experimental work is accomplished using phantoms that are sandwiched from fish heart or blood sac (simulating a tumor) 1-14mm mean diameter embedded within chicken breast to simulate a real tissue. Nd: YAG laser of 1.064μm and 532nm wavelengths, 10ns pulse duration, 4
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreScheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating opti
... Show More