Bipedal robotic mechanisms are unstable due to the unilateral contact passive joint between the sole and the ground. Hierarchical control layers are crucial for creating walking patterns, stabilizing locomotion, and ensuring correct angular trajectories for bipedal joints due to the system’s various degrees of freedom. This work provides a hierarchical control scheme for a bipedal robot that focuses on balance (stabilization) and low-level tracking control while considering flexible joints. The stabilization control method uses the Newton–Euler formulation to establish a mathematical relationship between the zero-moment point (ZMP) and the center of mass (COM), resulting in highly nonlinear and coupled dynamic equations. Adaptive approximation-based feedback linearization control (so-called adaptive computed torque control) combined with an anti-windup compensator is designed to track the desired COM produced by the high-level command. Along the length of the support sole, the ZMP with physical restrictions serves as the control input signal. The viability of the suggested controller is established using Lyapunov’s theory. The low-level control tracks the intended joint movements for a bipedal mechanism with flexible joints. We use two control strategies: position-based adaptive approximation control and cascaded position-torque adaptive approximation control (cascaded PTAAC). The interesting point is that the cascaded PTAAC can be extended to deal with variable impedance robotic joints by using the required velocity concept, including the desired velocity and terms related to control errors such as position, force, torque, or impedance errors if needed. A 6-link bipedal robot is used in simulation and validation experiments to demonstrate the viability of the suggested control structure.
The vision and philosophy of the economic system in Iraq after 2003 were not clear-cut because of overlapping internal factors was the novelty of the political system and the lack of political and economic decision makers to understanding and conviction full need shaping a new administration for the Iraqi economy is able to succeed economic development programs, and external factors was determinedly organizations international application of shock reforming style and contrary to the social reality and the security which reflected negatively on the work and consistency Lisseeash financial balance between stability and growth and raise the level of consumer spending and the importance of research lies in the ability of fiscal policy to achie
... Show MoreAbstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, w
... Show MoreCoronary artery disease (CAD) is the leading cause of death worldwide. Certain genetic polymorphisms play an important role in this multifactorial disease, being linked with increased risk of early onset CAD.
To assess six genetic polymorphisms and clinical risk factors in relation to early onset nondiabetic Iraqi Arab CAD patients compared to controls.
This case–contro
Experimental tests were carried to control lost circulation in the Khabaz oil field using different types of LCMs including Nano-materials. A closed-loop circulation system was built to simulate the process of lost circulation into formations. Two dolomite plugs were used from different depths of the formation of Azkand in Khabaz oil field. The experimentations were carried out to study the effect of different types of LCMs, cross-linked copolymer (FLOSORB CE 300 S), SiO2 NP, and Fe2O3 NP, on mud volume losses as a function of time.
The rheological measurements of the nanoparticles-reference mud system showed that both of the SiO2 NP and Fe2O3 NP w
... Show MoreThis study was conducted to determine the fungal cause and bio control of damping off and root rot of wheat plants by using pseudomonas fluorescens under greenhouse and field conditions. Results showed isolation of eight species from the soil and roots to deferent region of Baghdad government. Rhizoctonia solani (Rs) and Fusarium solani (Fs) were the predominant damping off fungus with frequency 60 and 52% respectively. Led the using of bacteria formulations such as crud suspension , pure bacteria filtration and pure living cells in culture medium inhibit all type fungi with rates ranging from 84-96% , 80- 93% and 75-88% respectively. Rs and Fs were more pathogenesis under greenhouse conditions, with incidence of 80 and 68% and disease s
... Show MoreThis paper presents a control system to make the robotic hand mimic human hand motion in real time and offline mode. The human hand tracking system is a wearable sensing arm (potentiometers) used to determine the position in space and to sense the grasping task of human hand. The maskable sensing arm was designed with same geometrical arrangement of robotic hand that needs to be controlled. The control software of a robot was implemented using Visual Basic and supported with graphical user interface (GUI). The control algorithm depends on joint to joint mapping method to match between the motions at each joint of portable sensing arm with corresponding joint of a robot in order to make the robot mimic the motion.
Aeroelastic flutter in aircraft mechanisms is unavoidable, essentially in the wing and control surface. In this work a three degree-of-freedom aeroelastic wing section with trailing edge flap is modeled numerically and theoretically. FLUENT code based on the steady finite volume is used for the prediction of the steady aerodynamic characteristics (lift, drag, pitching moment, velocity, and pressure distribution) as well as the Duhamel formulation is used to model the aerodynamic loads theoretically. The system response (pitch, flap pitch and plunge) was determined by integration the governing equations using MATLAB with a standard Runge–Kutta algorithm in conjunction with Henon’s method. The results are compared with
... Show MoreThe steel industry sector is witnessing an obvious growth in most worldwide nations and gulf countries. We wish that Iraq would be one of these superiors that go on along field to develop the construction industry in Iraq. Hence we need to notify that the government attention should be equivalent to the importance of steel industry and other industries would depend on this one, it should be presented the full support to the general sector, which is represented by ministry of industry and its institutions throughout the suitable legislation and facilities for the private companies are already into that, and they might record progress in this field. this study aims to use scrap steel as raw materials in manufacturing iron steel such war remai
... Show MoreIn this paper a dynamic behavior and control of a jacketed continuous stirred tank reactor (CSTR) is developed using different control strategies, conventional feedback control (PI and PID), and neural network (NARMA-L2, and NN Predictive) control. The dynamic model for CSTR process is described by a first order lag system with dead time.
The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method (Bode diagram) and Process Reaction Curve using the mean of Square Error (MSE) method. It is found that the Process Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than PI feedback controller.
The results s
... Show More