Bipedal robotic mechanisms are unstable due to the unilateral contact passive joint between the sole and the ground. Hierarchical control layers are crucial for creating walking patterns, stabilizing locomotion, and ensuring correct angular trajectories for bipedal joints due to the system’s various degrees of freedom. This work provides a hierarchical control scheme for a bipedal robot that focuses on balance (stabilization) and low-level tracking control while considering flexible joints. The stabilization control method uses the Newton–Euler formulation to establish a mathematical relationship between the zero-moment point (ZMP) and the center of mass (COM), resulting in highly nonlinear and coupled dynamic equations. Adaptive approximation-based feedback linearization control (so-called adaptive computed torque control) combined with an anti-windup compensator is designed to track the desired COM produced by the high-level command. Along the length of the support sole, the ZMP with physical restrictions serves as the control input signal. The viability of the suggested controller is established using Lyapunov’s theory. The low-level control tracks the intended joint movements for a bipedal mechanism with flexible joints. We use two control strategies: position-based adaptive approximation control and cascaded position-torque adaptive approximation control (cascaded PTAAC). The interesting point is that the cascaded PTAAC can be extended to deal with variable impedance robotic joints by using the required velocity concept, including the desired velocity and terms related to control errors such as position, force, torque, or impedance errors if needed. A 6-link bipedal robot is used in simulation and validation experiments to demonstrate the viability of the suggested control structure.
The concept of entransy dissipation was determined for new type of heat exchanger (shell and double concentric tubes heat exchanger). Three parameters, hot oil flow rate, temperature of inlet hot oil and pressure drop of system were investigated with this concept (entransy dissipation). The results showed that the value of entransy dissipation of oil and of system which represents the summation of entransy dissipation of both oil and water increased with increasing the flow rate of hot oil and these values were larger when cold water flow rate was doubled. Also they were increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, the pressure drops for hot oil in both shell side and inner tubes
... Show MoreA study in the treatment and reuse of oily wastewater generated from the process of fuel oil treatment of gas turbine power plant was performed. The feasibility of using hollow fiber ultrafiltration (UF) membrane and nanofiltration (NF) membrane type polyamide thin-film composite in a pilot plant was investigated. Three different variables: pressure (0.5, 1, 1.5 and 2 bars), oil content (10, 20, 30 and 40 ppm), and temperature (15, 20, 30 and 40 ᵒC) were employed in the UF process while TDS was kept constant at 150 ppm. Four different variables: pressure (2, 3, 4 and 5 bar), oil content (2.5, 5, 7.5 and 10 ppm), total dissolved solids (TDS) (100, 200,300 and 400 ppm), and temperature (15, 20, 30 and 40 ᵒC) were manipulated with the h
... Show MoreThe operating characteristics of optoelectronic devices depend critically on the properties physical of the constituent materials, interesting compound has been focused on this research formed from group III and V of the periodic table. Thin film n-InSb heterjuntion were successfully fabricated on p-Si substrates by thermal evaporation technique at different annealing temperature (as prepared, 400,500,600) °C. The effect of annealing temperature on the structural, surface morphology, optical and optoelectronic properties of InSb films were investigated and studied. The crystal structure of the film was characterized by X-ray diffraction and techniques. AFM techniques inspect the surface morphology of InSb films, the study presented the val
... Show MoreAlgae are photosynthetic microorganisms that play important role in aquatic ecosystems as they are the primary producers in aquatic food webs. Several groups of algae are capable of producing toxins that impact aquatic ecosystems, especially managed systems. Cyanobacteria are the most important algae in freshwaters, and many species produce cyanotoxins including hepatotoxins and neurotoxins. The potent cyano-neurotoxins β-N-methylamino-L-alanine (BMAA), 2, 4-diaminobutyric acid dihydrochloride (DABA), and anatoxin-a are especially critical with regards to public and animal health problems.
PDBN Rashid, Multidisciplinary International Journal, 2023
Corruption (Definition , Characteristics , Reasons , Features , and ways of combating it)
Polyaniline (PANI) has been prepared by the oxidation method in order to fabricate it with various concentrations of copper nanoparticles (CuNPs) which produced using the reduction method. Various techniques have characterized pure PANI and PANI doped CuNPs composites, such as fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS), which were provided important information about the structure and morphology of the fabricated polymer nanocomposites. The properties of dielectric permittivity (έ), dielectric loss (ἔ) and electrical conductivity (σ_AC) properties were studied at room temperature versus a range
... Show More