. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction accuracy criterion and matching curve-fitting in this work demonstrated that if the residuals of the revised model are white noise, the forecasts are unbiased. Future work investigating robust hybrid model forecasting using fuzzy neural networks would be very interesting
This study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show MoreSemiconductor quantum dots (QDs) have attracted tremendous attentions for their unique characteristics for solid-state lighting and thin-film display applications. A simple chemical method was used to synthesis quantum dots (QDs) of zinc sulfide (ZnS) with low cost. The XRD) shows cubic phase of the prepared ZnS with an average particles size of (3-29) nm. In UV-Vis. spectra observed a large blue shift over 38 nm. The band gaps energy (Eg) was 3.8 eV and 3.37eV from the absorption and photoluminescence (PL) respectively which larger than the Eg for bulk. QDs-LED hybrid devices were fabricated using ITO/ PEDOT: PSS/ Poly-TPD/ ZnS-QDs/ with different electron transport layers and cathode of LiF/Al layers. The EL spectrum reveals a bro
... Show MoreRecurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreThe mathematical construction of an ecological model with a prey-predator relationship was done. It presumed that the prey consisted of a stage structure of juveniles and adults. While the adult prey species had the power to fight off the predator, the predator, and juvenile prey worked together to hunt them. Additionally, the effect of the harvest was considered on the prey. All the solution’s properties were discussed. All potential equilibrium points' local stability was tested. The prerequisites for persistence were established. Global stability was investigated using Lyapunov methods. It was found that the system underwent a saddle-node bifurcation near the coexistence equilibrium point while exhibiting a transcritical bifurcation
... Show MoreIn this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.