There has been a great deal of research into the considerable challenge of managing of traffic at road junctions; its application to vehicular ad hoc network (VANET) has proved to be of great interest in the developed world. Dynamic topology is one of the vital challenges facing VANET; as a result, routing of packets to their destination successfully and efficiently is a non-simplistic undertaking. This paper presents a MDORA, an efficient and uncomplicated algorithm enabling intelligent wireless vehicular communications. MDORA is a robust routing algorithm that facilitates reliable routing through communication between vehicles. As a position-based routing technique, the MDORA algorithm, vehicles' precise locations are used to establish the optimal route by which the vehicles may reach their desired destinations. By determining the route containing the maximum distance with the minimum number of hops, MDORA minimizes the control overhead. The final aspect of the paper is to compare gains of MDORA with those of existing protocols such as AODV, GPSR-L and HLAR in terms of throughput, packet delivery ratio and average delay. From the analysis, it will be evident that the performance of MDORA is far better than the other protocols.
This paper presents an improved technique on Ant Colony Optimization (ACO) algorithm. The procedure is applied on Single Machine with Infinite Bus (SMIB) system with power system stabilizer (PSS) at three different loading regimes. The simulations are made by using MATLAB software. The results show that by using Improved Ant Colony Optimization (IACO) the system will give better performance with less number of iterations as it compared with a previous modification on ACO. In addition, the probability of selecting the arc depends on the best ant performance and the evaporation rate.
Fluoroscopic images are a field of medical images that depends on the quality of image for correct diagnosis; the main trouble is the de-nosing and how to keep the poise between degradation of noisy image, from one side, and edge and fine details preservation, from the other side, especially when fluoroscopic images contain black and white type noise with high density. The previous filters could usually handle low/medium black and white type noise densities, that expense edge, =fine details preservation and fail with high density of noise that corrupts the images. Therefore, this paper proposed a new Multi-Line algorithm that deals with high-corrupted image with high density of black and white type noise. The experiments achieved i
... Show MoreThree-dimensional (3D) reconstruction from images is a most beneficial method of object regeneration by using a photo-realistic way that can be used in many fields. For industrial fields, it can be used to visualize the cracks within alloys or walls. In medical fields, it has been used as 3D scanner to reconstruct some human organs such as internal nose for plastic surgery or to reconstruct ear canal for fabricating a hearing aid device, and others. These applications need high accuracy details and measurement that represent the main issue which should be taken in consideration, also the other issues are cost, movability, and ease of use which should be taken into consideration. This work has presented an approach for design and construc
... Show MoreIris detection is considered as challenging image processing task. In this study efficient method was suggested to detect iris and recognition it. This method depending on seed filling algorithm and circular area detection, where the color image converted to gray image, and then the gray image is converted to binary image. The seed filling is applied of the binary image and the position of detected object binary region (ROI) is localized in term of it is center coordinates are radii (i.e., the inner and out radius). To find the localization efficiency of suggested method has been used the coefficient of variation (CV) for radius iris for evaluation. The test results indicated that is suggested method is good for the iris detection.
Cryptography can be thought of as a toolbox, where potential attackers gain access to various computing resources and technologies to try to compute key values. In modern cryptography, the strength of the encryption algorithm is only determined by the size of the key. Therefore, our goal is to create a strong key value that has a minimum bit length that will be useful in light encryption. Using elliptic curve cryptography (ECC) with Rubik's cube and image density, the image colors are combined and distorted, and by using the Chaotic Logistics Map and Image Density with a secret key, the Rubik's cubes for the image are encrypted, obtaining a secure image against attacks. ECC itself is a powerful algorithm that generates a pair of p
... Show MoreObjective of this work is the mixing between human biometric characteristics and unique attributes of the computer in order to protect computer networks and resources environments through the development of authentication and authorization techniques. In human biometric side has been studying the best methods and algorithms used, and the conclusion is that the fingerprint is the best, but it has some flaws. Fingerprint algorithm has been improved so that their performance can be adapted to enhance the clarity of the edge of the gully structures of pictures fingerprint, taking into account the evaluation of the direction of the nearby edges and repeat. In the side of the computer features, computer and its components like human have uniqu
... Show More<p>In combinatorial testing development, the fabrication of covering arrays is the key challenge by the multiple aspects that influence it. A wide range of combinatorial problems can be solved using metaheuristic and greedy techniques. Combining the greedy technique utilizing a metaheuristic search technique like hill climbing (HC), can produce feasible results for combinatorial tests. Methods based on metaheuristics are used to deal with tuples that may be left after redundancy using greedy strategies; then the result utilization is assured to be near-optimal using a metaheuristic algorithm. As a result, the use of both greedy and HC algorithms in a single test generation system is a good candidate if constructed correctly. T
... Show MoreAbstract
Although the rapid development in reverse engineering techniques, 3D laser scanners can be considered the modern technology used to digitize the 3D objects, but some troubles may be associate this process due to the environmental noises and limitation of the used scanners. So, in the present paper a data pre-processing algorithm has been proposed to obtain the necessary geometric features and mathematical representation of scanned object from its point cloud which obtained using 3D laser scanner (Matter and Form) through isolating the noised points. The proposed algorithm based on continuous calculations of chord angle between each adjacent pair of points in point cloud. A MATLAB program has been built t
... Show More