Each project management system aims to complete the project within its identified objectives: budget, time, and quality. It is achieving the project within the defined deadline that required careful scheduling, that be attained early. Due to the nature of unique repetitive construction projects, time contingency and project uncertainty are necessary for accurate scheduling. It should be integrated and flexible to accommodate the changes without adversely affecting the construction project’s total completion time. Repetitive planning and scheduling methods are more effective and essential. However, they need continuous development because of the evolution of execution methods, essentially based on the repetitive construction projects’ composition of identical production units. This study develops a mathematical model to forecast repetitive construction projects using the Support Vector Machine (SVM) technique. The software (WEKA 3.9.1©2016) has been used in the process of developing the mathematical model. The number of factors affecting the planning and scheduling of the repetitive projects has been identified through a questionnaire that analyzed its results using SPSS V22 software. Three accuracy measurements, correlation coefficient (R), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), were used to check the mathematical model and to compare the actual values with predicted values. The results showed that the SVM technique was more precise than those calculated by the conventional methods and was found the best generalization with R 97 %, MAE 3.6 %, and RMSE 7 %.
The erythrocyte aggregation is an important physiological phenomenon in the circulation of blood. It is a basic characteristic of normal blood that plays a major role in the cardiovascular system, especially in the microcirculation. This study explained the kinetics of single cells rouleaux formation one- dimensional aggregate and three- dimensional aggregate, during simultaneous, and the effect of hematocrit on the process of aggregation and sedimentation. The present study was done on forty one healthy subjects. Laser light is passed through a well mixed sample of blood and the forward scattered light intensities recorded continuously. The samples were prepared with different hematocrit, (10%, 15%, 20%, and 25%). Increasing
... Show MoreThis work describes the enhancement of phenol red decolorization through immobilizing of laccase in chitosan and enzyme recycling. Commercial laccase from white rot fungus, Trametesversicolor (Tvlac), was immobilizedin to freshly prepared chitosan beads by using glutaraldehyde as a cross linker. Characterization of prepared chitosan was confirmed by FTIR and scanning electron microscope (SEM). Tvlac (46.2 U/mL) immobilized into chitosan beads at 0.8 % glutaraldehyde (v/v) within 24 hrs. Synthetic (HBT) and natural (vanillin) mediators were used to enhance dye decolorizoation. It was found that 89 % of phenol red was decolorized by chitosan beads within 180 min. in the absence of enzyme and mediator, while decolorization percenta
... Show MoreThe consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying
... Show MoreAdvanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m
... Show MoreThe fall angle of sun rays on the surface of a photovoltaic PV panel and its temperature is negatively affecting the panel electrical energy produced and efficiency. The fall angle problem was commonly solved by using a dual-axis solar tracker that continually maintains the panel orthogonally positioning to the sun rays all day long. This leads to maximum absorption for solar radiation necessary to produce maximum amount of energy and maintain high level of electrical efficiency. To solve the PV panel temperature problem, a Water-Flow Double Glazing WFDG technique has been introduced as a new cooling tool to reduce the panel temperature. In this paper, an integration design of the water glazing system with a dual-axis tracker has been ac
... Show MoreABSTRUCT
This research aims at examining the expected gap between the fact of planning and controlling process of production at the State Company for Electric Industries and implementation of material requirements planning system in fuzzy environment. Developing solutions to bridge the gap is required to provide specific mechanisms subject to the logic of fuzzy rules that will keep pace with demand for increased accuracy and reduced waiting times depending on demand forecast, investment in inventory to reduce costs to a minimum.
The proposed solutions for overcoming the research problem has required some questions reflecting the problem with its multiple dimensions, which ar
... Show MoreTo expedite the learning process, a group of algorithms known as parallel machine learning algorithmscan be executed simultaneously on several computers or processors. As data grows in both size andcomplexity, and as businesses seek efficient ways to mine that data for insights, algorithms like thesewill become increasingly crucial. Data parallelism, model parallelism, and hybrid techniques are justsome of the methods described in this article for speeding up machine learning algorithms. We alsocover the benefits and threats associated with parallel machine learning, such as data splitting,communication, and scalability. We compare how well various methods perform on a variety ofmachine learning tasks and datasets, and we talk abo
... Show More