The reinforced fiberglass in cement slurry reflects the effect on its properties compared to usual additives. Fiberglass is typically used in cement slurry design for one or another of the following goals: (Earth earthquake, bearing storage, and with differential stresses, to enhance cement durability and increase its compressive strength). The main goal is to use glass fiber and ground fiberglass to improve the tensile strength and moderate compressive strength significantly. On the other hand, the use of glass fibers led to a slight increase in the value of thickening time, which is a desirable effect. Eleven glass fiber samples and milled glass fiber were used to show these materials' effect on Iraqi cement with (0.125, 0.25, 0.5, 0.75, 1, and 2) % of cement weight. Those tests used to study cement slurry‟s following properties were compressive strength, thickening time, rheology properties of free water, filtering, and density. These evaluations showed that slurries with less than 1% fiber content gave a higher compressive strength than a sample containing more than 1% glass fiber. However, the slurry mixed with equal or less than 1% milled glass fiber is higher compressive than the sample mixed with more than 1% milled glass fiber. So the optimal concentration for glass fiber is less than 1% by weight of cement (BWOC); either for milled glass fiber, it is less or equal to 1% BWOC. Both materials contributed to increasing the compressive strength of the cement. However, attention must be paid to the idealThis work is licensed under a Creative Commons Attribution 4.0 International License. concentration that should be added during the cement slurry preparation because if we use these two materials carelessly for the ideal concentration, this leads to the collapse and bombardment of the resistance of the cement rock. In other words, the collapse of cement resistance and causing problems during the cementing process.
In this work, an experimental investigation has been done for heat transfer by natural-convection through a horizontal concentric annulus with porous media effects. The porous structure in gap spacing consists of a glass balls and replaced by plastic (PVC) balls with different sizes. The outer surface of outer tube is isothermally cooled while the outer surface of inner tube is heated with constant heat flux condition. The inner tube is heated with different supplied electrical power levels. Four different radius ratios of annulus are used. The effects of porous media material, particles size and annulus radius ratio on heat dissipation in terms of average Nusselt number have been analyzed. |
The insect is diagnosed and named by the National Center of Biotechnology Information (NCBI), USA as the Mint leaf Beetle Chrysolina herbacea alnadawi (Duftschmid, 1825), (Coleoptera: Chrysomelidae). The diagnosis was performed depending on the DNA analysis by 73% similarity with Chrysolina herbacea (Duftschmid, 1825) sequence, In the present study. It is recorded as a new insect pest on mint plant Mentha puleguim (L,1753) (Lamiaceae). DNA analysis confirmend that it is recorded for the first time in Iraq and the Arab world as well as the Middle East. Those insects were observed initially during August 2017 in residential gardens of Al-Bonooq district in Baghdad / Iraq.
Glass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load
... Show Morein this paper, we study and investigate a simple donor-acceptor model for charge transfer formation using a quantum transition theory. The transfer parameters which enhanced the charge transfer and the rate of the charge transfer have been calculated. Then, we study the net charge transfer through interface of Cu/F8 contact devices and evaluate all transfer coefficients. The charge transfer rate of transfer processes is found to be dominated in the low orientation free energy and increased a little in decreased potential at interface comparison to the high potential at interface. The increased transition energy results in increasing the orientation of Cu to F8. The transfer in the system was more active when the system has large driving for
... Show MoreAnastatica Hierochuntica L. Used As an Alternative of Conjugated Estrogen (Premarin) in Rabbit Females
In this work, optical system with different aperture shapes (circular, square, elliptical and triangle aperture) has been used for efficiency evaluation when the system involved moving factor in ideal case (aberration free). The optical system evaluate far moving object, therefore the image forming at image plane due to point spread function (image formula of incoherently illuminated point object). A mathematical treatment has been used to getting results by Gaussian numerical calculations method. The results show priority of circular aperture when optical system that submits of moving factor.
A simple and accurate method to determinate furosemide (FUR) based on converting the secondary amine to primary amine with acidic hydrolysis then azotization by nitrous acid and coupled with resorcinol as a coupling agent in aqueous medium at pH 13. The optical characteristic like beers law limit found to be (0.25-2.5) μg.ml−1, detection and quantification limits (0.0196) (0.0654) μg.ml−1respectivly and Sandel sensitivity was 0.006738 μg.cm−2. The least-square method was used to evaluate the regression equation and the correlation coefficient. The resulted azo dye has a maximum absorbance at 430 nm with light oran