Background: This study evaluated the influence of different fiber formulations incorporation in resin composite on cuspal deflection (CD) of endodontically-treated teeth with mesio-occluso-distal (MOD) cavities. Materials and Methods: Thirty-two freshly extracted maxillary premolar teeth received MOD cavity preparation followed by endodontic treatment using single cone obturation technique, and divided into: Group I: direct composite resin only using a centripetal technique, Group II: direct composite resin with short fiber-reinforced composite (everX Flow), Group III: direct composite resin with leno wave ultra-high molecular weight polyethylene (LWUHMWPE) fibers placed on the cavity floor, and Group IV: direct composite resin with LWUHMWPE fibers placed circumferentially around the cavity walls (wallpapering technique). The CD was measured using a novel digital evaluation method, whereby each tooth was scanned by a desktop scanner (Medit T710) at three different time intervals: before and after cavity preparation, and after restoration. The intercuspal distance (ICD) was measured digitally in μm at each interval using Medit compare metrology software, followed by measurement of the CD by subtracting the ICD after cavity preparation; and after restoration from the before preparation one to obtain the “after cavity preparation CD1” and “the after restoration CD2”, respectively. The data were analyzed using one-way ANOVA and Tukey HSD tests at a significance level of 0.05. Results: The highest CD was recorded in Group I with statistically significant differences with all other groups (P<0.05). No statistically significant differences were found between the other groups (Groups II, III, and IV) (P>0.05). Conclusions: There was an inward deflection of the cusps in all groups following cavity preparation and restoration as elicited by the negative CD1 and CD2 values. The incorporation of fibers, regardless of their type or orientation, resulted in a significant reduction in CD of endodontically treated premolar teeth as compared with those restored with resin composite alone.
Critical buckling and natural frequencies behavior of laminated composite thin plates subjected to in-plane uniform load is obtained using classical laminated plate theory (CLPT). Analytical investigation is presented using Ritz- method for eigenvalue problems of buckling load solutions for laminated symmetric and anti-symmetric, angle and cross ply composite plate with different elastic supports along its edges. Equation of motion of the plate was derived using principle of virtual work and solved using modified Fourier displacement function that satisfies general edge conditions. Various numerical investigation were studied to exhibit a convergence and accuracy of the present solution for considering some design parameters such as edge
... Show MoreBackground: Separation and deboning of artificial teeth from denture bases present a major clinical and labortory problem which affect both the patient and the dentist. The optimal bond strength of artificial teeth with denture base reinforced with nanofillers and flexible denture bases and the effect of thermo cycling should be evaluated. This study was conducted to evaluate and compare the shear bond strength of artificial teeth (acrylic and porcelain) with denture bases reinforced by 5% Zirconium oxide nanofillers and flexible bases under the effect of different surface treatments and thermo cycling and comparing the results with conventional water bath cured denture bases. Material and methods: Two types of artificial teeth; acrylic and
... Show MoreSupra nanoparticles (submicron) of Chicken bones fibers were used (before and after treated with citric acid solution) as additives to dental composite with the weight ratios (1%, 2% and 4%). The main mechanical tests represented by hardness, wear resistance and compression strength was carried out on the improvement dental composites.
The addition of treated supra nanoparticles Chicken thigh bones with particles size (300 nm) by weight ratio (1%) to ordinary dental composite resin , significantly improves all of its mechanical properties, in addition to the increase the value of the its glass transition temperature from 43oC to 45.4 oC. The techniques X-ray diffraction (XRD), Energy Dispersive Spectr
... Show MoreIntroduction: The present study was performed to evaluate the influence of a 1064 nm fiber laser on shear bond strength (SBS) at the interface of titanium and resin cement. Methods: Forty titanium discs of 6 mm × 3 mm (diameter and thickness respectively) were categorized into four groups (n=10): control group without any surface treatment and three groups treated with a fiber laser with 81 ns pulse duration, 30 kHz frequency, 10000 mm/s scanning speed, 0.05 mm spot size, and different average power values (3, 5 and 7 W) depending on the tested group. Titanium disc characterization was performed by the scanning electron microscope (SEM) and surface roughness tester. Phase analysis was achieved using an X-ray diffractometer (XRD). F
... Show MoreTo enhance interfacial bonding between carbon fibers and epoxy matrix, the carbon fibers have been modified with multiwall carbon nanotubes (MWCNTs) using the dip- coating technique. FT-IR spectrum of the MWCNTs shows a peak at 1640 cm−1 corresponding to the stretching mode of the C=C double bond which forms the framework of the carbon nanotube sidewall. The broad peak at 3430 cm−1 is due to O–H stretching vibration of hydroxyl groups and the peak at 1712 cm−1 corresponds to the carboxylic (C=O) group attached to the carbon fiber. The peaks at 2927 cm−1 and 2862 cm−1 ar
Background: Poly (methyl methacrylate) has been widely utilized for fabrication of dentures for many years as it has good advantages but not achieved all demands of the mechanical properties such as low transverse strength, low impact strength, low surface hardness, high water solubility and high water sorption. Material and method: To provide bonding between ZrO2 nanoparticles and PMMA matrix, the ZrO2 Nano-fillers were surface-treated with a saline coupling agent. Plasma surface treatment of polyethylene (PE) fiber was done to change surface fiber by using DC- glow discharge system. For characterization of interring any functional groups, the (FTIR) spectrum were done .then the mechanical properties studied to choose the appropriate perc
... Show MoreThis research aims to investigate the thermal performance of different thermal composite insulators, wrapped around a closed-loop copper pipe (CLP). To achieve this aim a system was designed and manufactured. It is consisted of closed water tank insulated by Rock Wool, and supplied with two electric heaters, two thermostat, a flow meter, a water pump, digital temperature scales, and four series of (CLP).
Six insulators were prepared namely; composites of Impregnated Fiberglass with Elastoclad and foaming Rubber (FER), Impregnated Fiberglass with Elastoclad resin and Polymeric Membrane (FEM), Impregnated Fiberglass with Polyurethane thermoset resin and Foaming Rubber (FUR), Impregnated Fiberglass with Polyurethane thermoset resin and P
tA novel synthesis procedure is presented for preparing triethanolamine-treated graphene nanoplatelets(TEA-GNPs) with different specific areas (SSAs). Using ultrasonication, the covalently functionalizedTEA-GNPs with different weight concentrations and SSAs were dispersed in distilled water to prepareTEA-GNPs nanofluids. A simple direct coupling of GNPs with TEA molecules is implemented to synthesizestable water-based nanofluids. The effectiveness of the functionalization procedure was validated by thecharacterization and morphology tests, i.e., FTIR, Raman spectroscopy, EDS, and TEM. Thermal conduc-tivity, dispersion stability, and rheological properties were investigated. Using UV–vis spectrometer, ahighest dispersion stability of 0.876
... Show More