Designing machines and equipment for post-harvest operations of agricultural products requires information about their physical properties. The aim of the work was to evaluate the possibility of introducing a new approach to predict the moisture content in bean and corn seeds based on measuring their dimensions using image analysis using artificial neural networks (ANN). Experimental tests were carried out at three levels of wet basis moisture content of seeds: 9, 13 and 17%. The analysis of the results showed a direct relationship between the wet basis moisture content and the main dimensions of the seeds. Based on the statistical analysis of the seed material, it was shown that the characteristics examined have a normal or close to normal distribution, and the seed material used in the investigation is representative. Furthermore, the use of artificial neural networks to predict the wet basis moisture content of seeds based on changes in their dimensions has an efficiency of 82%. The results obtained from the method used in this work are very promising for predicting the moisture content.
Iraqi agriculture faces a major water problem, affecting cultivated areas, agricultural production, farmers’ incomes and food security. However, the results achieved in rationalizing the use of irrigation water are still limited and do not match what they should be in order to meet this serious challenge. The study aimed to provide a vision for the development of the effectiveness of the dissemination of innovations to rationalize the use of irrigation water in Iraqi agriculture. In light of the framework of the dissemination of agricultural innovations, factors related to their effectiveness, and the summary of the Iraqi experience in the field of dissemination of modern irrigation
Using photo electrochemical etching technique (PEC), porous silicon (PS) layers were produced on n-type silicon (Si) wafers to generate porous silicon for n-type with an orientation of (111) The results of etching time were investigated at: (5,10,15 min). X-ray diffraction experiments revealed differences between the surface of the sample sheet and the synthesized porous silicon. The largest crystal size is (30 nm) and the lowest crystal size is (28.6 nm) The analysis of Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to research the morphology of porous silicon layer. As etching time increased, AFM findings showed that root mean square (RMS) of roughness and po
... Show MoreCdS and CdTe thin films were thermally deposited onto glass substrate. The CdCl2 layer was deposited onto CdS surface. These followed by annealing for different duration times to modify the surface and interface of the junction. The diffraction patterns showed that the intensity of the peaks increased with the CdCl2/annealed treatment, and the grain sizes are increased after CdCl2/annealed treatment
This study compared and classified of land use and land cover changes by using Remote Sensing (RS) and Geographic Information Systems (GIS) on two cities (Al-Saydiya city and Al-Hurriya) in Baghdad province, capital of Iraq. In this study, Landsat satellite image for 2020 were used for (Land Use/Land Cover) classification. The change in the size of the surface area of each class in the Al-Saydiya city and Al-Hurriya cities was also calculated to estimate their effect on environment. The major change identified, in the study, was in agricultural area in Al-Saydiya city compare with Al-Hurriya city in Baghdad province. The results of the research showed that the percentage of the green
The electronic properties and Hall effect of thin amorphous Si1-xGex:H films of thickness (350 nm) have been studied such as dc conductivity, activation energy, Hall coefficient under magnetic field (0.257 Tesla) for measuring carrier density of electrons and holes and Hall mobility as a function of germanium content (x = 0–1), deposition temperature (303-503) K and dopant concentration for Al and As in the range (0-3.5)%. The composition of the alloys and films were determined by using energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS).
This study showed that dc conductivity of a-Si1-xGex:H thin films is found to increase with increasing Ge content and dopant concentration, whereas conductivity activati
In this research study the effect of fish in alternating electrical properties at room temperature copper oxide membranes and fish prepared in a manner different thermal spraying chemical on a thin glass bases and heated
In this study, two types of local plants were chosen, the first is the plant golden pothos Epipremnum aureum and the second is the Iraqi Sheikh's chin plant Tribulus terrestris L, for the purpose of making a comparison between them in terms of their possession of chemical groups with antioxidant activity in order to use them as a natural alternative to using antioxidants Industrial that cause negative effects on human health, the samples were prepared using the method of water and alcohol extraction (ethanol 70%) for both plants. It revealed the presence of a number of chemical groups (tannins, carbohydrates, phenols, flavonoids, alkaloids) for both plants, the aqueous and alcoholic extracts. Coumarins are only found in the sheikh's chin pl
... Show MoreIn the present study a new synthesis method has been introduced for the decoration of platinum(Pt) on the functionalized graphene nanoplatelet (GNP) and also highlighted the preparation method of nanofluids. GNP–Pt uniform nanocomposite was produced from a simple chemical reaction procedure, which included acid treatment for functionalization of GNP. The surface characterization was performed by various techniques such as XRD, FESEMand TEM. The effective thermal conductivity, density, viscosity, specific heat capacity and stability of functionalized GNP–Pt water based nanofluids were investigated in different instruments. The GNP–Pt hybrid nanofluids were prepared by dispersing the nanocomposite in base fluid without adding any surfac
... Show More