This study looked at how the synthetic chitosan-AgNPs-Doxorubicin-folic acid combination affected the A549 cell line in terms of cytotoxicity and anticancer activity. By reducing silver nitrate (AgNO3) and biodegradable chitosan, silver nanoparticles were biosynthesized. The produced conjugate was examined by using FT-IR spectroscopy, atomic force microscopy (AFM), and field emission scanning electron microscopy (FE-SEM). The cytotoxicity assay for the viability of A549 cells revealed that the combination of chitosan, AgNPs, doxorubicin, and folic acid decrease cell viability in a dose-determined by method over 48 hours, which direct to a dependent reduce in the activity of A549 cells. The mechanism analysis of the impacted living cells leading to apoptosis revealed a considerable rise in nuclear concentration, cytochrome c, and cell membrane permeability (dose-dependent). The bright green chromatin in DOX-treated cells was compacted or broken up, indicating an early stage of apoptosis. However, cells treated with the CS-AgNPs-DOX-FA compound displayed orange nuclei and late stage apoptosis. The findings demonstrated that A549 lung cancer cells are cytotoxic to Cs-Ag NPs-DOX-FA. The Cs-Ag NPs-DOX-FA MTT assay demonstrated that the harmful effect of 25 µg/mL on A549 cells is dose-dependent, and a rise in nuclear intensity, membrane permeability, and cytochrome were observed. Cell viability also declined, and the potential of the mitochondrial membrane changed. The fact that the release of DOX was delayed shows that nanoparticles in drug carriers may be used to reduce the exposure of healthy tissues; however, boosting the accumulation to therapeutic medicine in the tumor site.
Salicylaldehyde was reacting with 2-amino benzoic acid to produce the Schiff base ligand benzoic acid 2-salicylidene (L). The prepared ligand was identified by Microelemental Analysis, FT.IR and UV-Vis spectroscopic techniques. A new complexes of Co(II),Ni(II),Cu(II) and Zn(II) with Schiff base was prepared in aqueous ethanol with a (1:1) M:L. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Biological activity of the ligand and complexes against three selected types of bacteria were also examined. Some of the complexes exhibit good bacterial activities. From the obtained data the tetrahedral str
... Show MoreThis paper presents the synthesis and study of some new mixed-liagnd complexes containing tow amino acids[Alanine(Ala) and phenylalanine (phe)] with some metals . The results products were found to be solid crystalline complexes which have been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity and solubilty The proposed structure of the complexes using program , chem office 3D(2000) . The general formula have been given for the prepared complexes : [M(A-H)(phe-H)] M(II): Hg , Mn ,Co , Ni , Cu ) , Zn , Cd(II) . Ala = Alanine acid = C3H7NO2 Phe = phenylalanine = C9H11NO2
Thispaperpresentsthesynthesisandstudyofsomenewmixed-liagnd complexescontainingtowaminoacids[Alanine(Ala)andphenylalanine(phe)]withsome metals .Theresultsproductswerefoundtobesolidcrystallinecomplexeswhichhave been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity and solubiltyThe proposed structure of the complexes using program , chem office 3D(2000) .The general formula have been given for the prepared complexes :[M(A-H)(phe-H)]M(II): Hg , Mn ,Co , Ni , Cu ) , Zn , Cd(II) .Ala = Alanine acid = C3H7NO2Phe = phenylalanine = C9H11NO2
This paper presents the synthesis and study of some new mixed-ligand complexes containing anthranilic acid and amino acid phenylalanine (phe) with some metals . The resulting products were found to be solid crystalline complexes which have been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity . The proposed structure of the complexes using program , chem office 3D(2000) . The general formula have been given for the prepared complexes : [M(A-H)(phe-H)] M(II): Hg(II) , Mn(II) ,Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) . A = Anthranilic acid = C7H7NO2 Phe = phenylalanine = C9H11NO2
Objective: In this study ,the effects of silver nanoparticles (Ag NPs)were investigated on the liver and kidney tissues. Methodology: The produced nanoparticles have an average particle size of about 30 nm. Eighteen male albino rats were used by dividing them into three groups, each group comprise 6 rats. First group(control group) given food and water like other groups by liberty. Second group was tail injected by (AgNPs) at dose of (0.4 mg/kg. body weight/day). Third group was injected by (AgNPs) at dose of (0.6 mg/kg. body weight/day) for 15 days. All animals were sacrified at the end of experiment. The liver and kidney tissues specimens were fixed in 10% formalin and histological preparations were carried out then stained with H&E. Path
... Show MoreIn this work, the effect of ceramic coating on performance, exhaust gas temperature and gases emissions of diesel engine operated on diesel fuel and biodiesel blends was investigated. A conventional four stroke, direct injected, single cylinder, diesel engine was tested at constant speed and at different load conditions using diesel fuel and biodiesel blends. The inlet and exhaust valves, the head of piston and cylinder head of the engine were coated by ceramic materials. Ceramic layers were made of (210-240) μm of Al2O3 and (30-60) μm of 4NiCr5Al as a bond coat for inlet and exhaust valves and (350-400) μm of YSZ and (50-100) μm of 4NiCr5Al as a bond coat for head of piston and (280-320) μm of Sic and (40-80) μm of 4NiCr5Al as a b
... Show More
