Adsorption techniques are widely used to remove certain classes of pollutants from wastewater. Phenolic compounds represent one of the problematic groups. Na-Y zeolite has been synthesized from locally available Iraqi kaolin clay. Characterization of the prepared zeolite was made by XRD and surface area measurement using N2 adsorption. Both synthetic Na-Y zeolite and kaolin clay have been tested for adsorption of 4-Nitro-phenol in batch mode experiments. Maximum removal efficiencies of 90% and 80% were obtained using the prepared zeolite and kaolin clay, respectively. Kinetics and equilibrium adsorption isotherms were investigated. Investigations showed that both Langmuir and Freundlich isotherms fit the experimental data quite well. On the other hand, the adsorption of phenol was found to obey first-order kinetics.
In this work, a composite material was prepared from Low-density polyethylene (LDPE) with different weight percent of grain and calcinations kaolin at temperature of (850oC) using single screw extruder and a mixing machine operated at a temperature between (190-200oC). Some of mechanical and physical properties such as tensile strength, tensile strength at break, Young modulus, and elongation at break, shore hardness and water absorption were determined at different weight fraction of filler (0, 2, 7, 10 and 15%). It was found that the addition of filler increases the modulus of elasticity, elongation at break, shore hardness and impact strength; on other hand, it decreases the tensile strength and tensile strength
... Show MoreAniline and its derivatives are common contaminants in various wastewaters and represent a serious worry for societies health and a challenge to ecologists due to their dangers effects on to the human health.
ZSM-5 zeolite was prepared from locally available materials (kaolin and rice husk) for adsorption of aniline from synthetic wastewater. Characterization of the prepared zsm-5, kinetics and thermodynamic of the adsorption process were investigated.
The characterization results of the prepared zsm-5 zeolite showed that the surface area was 270.1 m2/g and pore volume 0.21828 cm3/g. The silica to alumina ratio (Si/Al) was 166. 47 and the sodium content was 11 wt. %. The atomic force microscope (AFM)
... Show MoreActivated carbon derived from Ficus Binjamina agro-waste synthesized by pyro carbonic acid microwave method and treated with silicon oxide (SiO2) was used to enhance the adsorption capability of the malachite green (MG) dye. Three factors of concentration of dye, time of mixing, and the amount of activated carbon with four levels were used to investigate their effect on the MG removal efficiency. The results show that 0.4 g/L dosage, 80 mg/L dye concentration, and 40 min adsorption duration were found as an optimum conditions for 99.13% removal efficiency. The results also reveal that Freundlich isotherm and the pseudo-second-order kinetic models were the best models to describe the equilibrium adsorption data.
In the present research, the chemical washing method has been selected using three chelating agents: citric acid, acetic acid and Ethylene Diamine Tetraacetic Acid (EDTA) to remove 137Cs from two different contaminated soil samples were classified as fine and coarse grained. The factors that affecting removal efficiency such as type of soil, mixing ratio and molarity have been investigated. The results revealed that no correlation relation was found between removal efficiency and the studied factors. The results also showed that conventional chemical washing method was not effective in removing 137Cs and that there are further studies still need to achieve this objective.
The aim of this paper was to investigate the removal efficiencies of Zn+2 ions from wastewater by adsorption (using tobacco leaves) and forward osmosis (using cellulose triacetate (CTA) membrane). Various experimental parameters were investigated in adsorption experiment such as: effect of pH (3 - 7), contact time (0 - 220) min, solute concentration (10 - 100) mg/l, and adsorbent dose (0.2 - 5)g. Whereas for forward osmosis the operating parameters studied were: draw solution concentration (10 - 150) g/l, pH of feed solution (4 - 7), feed solution concentration (10 - 100) mg/l. The result showed that the removal efficiency by using adsorption was 70% and the removal efficiency by using forward osmosis was 96.2 %.
... Show Moreالصيغة العامة للمعقدات الجديدة [M2(BDS)Cl4] الناتجة من تفاعل الليكاند الجديد] ن1,ن4-ثنائي(1أ –بنزو]د[ اميدازول-2-يل)-ن1,ن4-ثنائي(4-ثنائي مثيل امينو) بنزيل) سكسنمايد[ (BDS) مع الايونات الفلزية الكادميوم, الكوبلت, الزئبق, النحاس والنيكل. تم اشتقاق هذا الليكاند من تفاعل المواد الثلاث 4-(ثنائي ميثيل أمينو) بنزالدهيد، 2-أمينو بنزيميدازول، وكلوريد السكسينيل. تم تشخيص المركبات باستخدام مطيافية طيف الاشعة تحت الحمراء وطيف الرن
... Show MoreLarge quantities of contaminated carwash wastewater are produced per day from carwash places. Extensively it contains large quantities of chemicals from detergents, oil, grease, heavy metals, suspended solids, types of hydrocarbons, and biological contents. A novel electrocoagulation treatment by foil electrodes was conducted to remove COD, turbidity, Total Dissolved Solids (TDS) from contaminated carwash wastewater and decrease its Electrical Conductivity (EC). A thin layer of aluminum foil is used as an electrode in this treatment process. The effects of different voltage and treatment times were studied. The best result was found at a voltage of 30 volts and treatment time 90 minute where the removal efficiency of COD
... Show MoreIn this study, ultraviolet (UV), ozone techniques with hydrogen peroxide oxidant were used to treat the wastewater which is produced from South Baghdad Power Station using lab-scale system. From UV-H2O2 experiments, it was shown that the optimum exposure time was 80 min. At this time, the highest removal percentages of oil, COD, and TOC were 84.69 %, 56.33 % and 50 % respectively. Effect of pH on the contaminants removing was studied in the range of (2-12). The best oil, COD, and TOC removal percentages (69.38 %, 70 % and 52 %) using H2O2/UV were at pH=12. H2O2/ozone experiments exhibited better performance compared to
... Show MoreThis work describes the enhancement of phenol red decolorization through immobilizing of laccase in chitosan and enzyme recycling. Commercial laccase from white rot fungus, Trametesversicolor (Tvlac), was immobilizedin to freshly prepared chitosan beads by using glutaraldehyde as a cross linker. Characterization of prepared chitosan was confirmed by FTIR and scanning electron microscope (SEM). Tvlac (46.2 U/mL) immobilized into chitosan beads at 0.8 % glutaraldehyde (v/v) within 24 hrs. Synthetic (HBT) and natural (vanillin) mediators were used to enhance dye decolorizoation. It was found that 89 % of phenol red was decolorized by chitosan beads within 180 min. in the absence of enzyme and mediator, while decolorization percenta
... Show More