Resilient polymeric materials such as silicone elastomers are currently used for maxillofacial prostheses construction but the strength of these materials and their clinical performance need to be optimized with the addition of reinforcing fillers. This study investigates the effect of zirconia nanopowder addition on tear strength, tensile strength, elongation at break, Shore A hardness, surface roughness and cytotoxicity of VST-50 maxillofacial silicone. Silicone base was mixed with different amounts (1%, 2% and 3%) of zirconia nanopowder using a vacuum mixer. Silicone without filler was used as control for comparison. Scanning Electron Microscopy and Atomic Force Microscopy were utilized to assess the efficiency of high-shear vacuum mixing as filler dispersion method and the surface topography, respectively. Both SEM and AFM images showed that the zirconia nanopowder were distributed fairly well within the polymer. Statistically, highly significant increase in tear strength, tensile strength and hardness with non-significant decrease in elongation at break and non-significant increase in surface roughness were seen with 1% and 2% groups. Whereas with 3% group, there was significant improvement in tear strength, tensile strength and hardness but there was significant undesirable decrease in elongation and increase in roughness. Cytotoxicity test revealed that the addition of zirconia nanopowder was nontoxic to Rat Embryonic Fibroblast (REF) cells and there was non-significant change in the cell viability of all study groups after 24- and 72-hours incubation periods. In conclusion, the addition of 2% by weight nano zirconia to VST-50 maxillofacial silicone could be beneficial in enhancing its performance.
Oilwell cementing operations are crucial for drilling and completion, preserving the well's productive life. However, weak and permeable formations pose a high risk of cement slurry loss, leading to failure. Lightweight cement, like foamed cement, is used to avoid these difficulties. This study is focused on creating a range of foamed slurry densities and examining the effect of gas concentration on their rheological properties. The foaming agent and foam stabilizer are tested, and the optimal concentration is determined to be 2% and 0.12%, respectively, by the weight of the cement.
Furthermore, the construction of samples of foam cement with different densities (0.8, 1.0, 1.2, 1.4, and 1.6) g/cc is performed to f
... Show MoreIn this research work a composite material was prepared contains a matrix which is unsaturated polyester resin (UPE) reinforced with carbon nanotube the percentage weight (0.1, 0.2, 0.4.0.5) %, and Zn particle the percentage weight (0.1, 0.2,0.4,0.5)%.
All sample were prepared by hand lay-up, process the mechanical tests contains hardness test, wear rate test, and the coefficient of thermal conductivity. The results showed a significant improvement in the properties of overlapping, Article containing carbon nano-tubes and maicroparticles of zinc because of its articles of this characteristics of high quality properties led to an, an increase in the coefficient of the rmalconductivity, and increase the hardness values with increased pe
Objective(s): This study aims to evaluate the hardness of two commercially available cold cured acrylic resin material
(Vertex and PAN) when polymerized at different temperature in comparison to those polymerized by conventional
methods in air at 23C ± 5C.
Methodology: Eighty specimens, forty from cold cured acrylic (Vertex Type) and forty from cold cured acrylic (PAN
type) were prepared, flasking and packing procedure were done according to manufacturer direction and divided
according to processing as follow: 20 specimens (10 from Vertex type and 10 from PAN type) were processed in air for
two hours at 23C ± 5C under press (bench curing) as a control, and 60 specimens (30 from Vertex type and 30 from
PAN type) wer
Abstract Additive manufacturing has been recently emerged as an adaptable production process that can fundamentally affect traditional manufacturing in the future. Due to its manufacturing strategy, selective laser melting (SLM) is suitable for complicated configurations. Investigating the potential effects of scanning speed and laser power on the porosity, corrosion resistance and hardness of AISI 316L stainless steel produced by SLM is the goal of this work. When compared to rolled stainless steel, the improvement is noticeable. To examine the microstructure of the samples, the optical microscopy (OM), scanning electron microscopy (SEM), and EDX have been utilized. Hardness and tensile strength were us
... Show MoreConventional concretes are almost unbending, and even a small amount of strain potential leaves them brittle. This lack of bendability is a major source of strain loss, and it has been the main goal behind the development of bendable concrete, often known with engineered ce ment composites, or ECC. This form of concrete has a lot more flexibility than regular concrete. Micromechanical polymer fibers are used to strengthen ECC. In most cases, ECC uses a 2% amount of thin, separated fibers. As a result, bendable concrete deforms but unlike traditional concrete, it does not crack. This study aims to include this kind of concrete, bendable concrete, which can be used to solve concrete problems. Karasta (CK) and Tasluja (CT) Portland Lime
... Show MoreBackground: Impression materials, impression trays, and poured stone cast have been said to be the main source of cross infection between patients and dentists. However, it was observed that disinfection of the impression is not performed systematically in routine dental practice. Disinfection of alginates either by immersion or spray technique was found to cause dimensional inaccuracies, although with proper disinfection of alginates there were small dimensional changes. A variety of fluoride releasing products designed for topical use is currently available. Following their use, varied amount of fluoride is systemically absorbed depending on the fluoride concentration and the manner of its use. The objective of this study was to evaluate
... Show MoreThe aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t
... Show MoreBackground: The type of dental implant surface is one of many factors that determine the success of implant restoration. This study aimed to study the effect of mixture of nano titanium oxide with nanohydroxyapatite coating of screw shaped CPTi dental implant on bond strength at bone implant interface by torque removal test related to two healing periods (2 and 6 weeks). Materials and methods: Dip coating process was performed to get an even coating layer on CPTi screws. X-ray diffraction (XRD) analysis and microscopical examination were performed on the coating surfaces of the CPTi. The tibia of 10 white New Zealand rabbits was chosen as implantation sites. The tibia of each rabbit received two screws, one was coated with mixture of nanoT
... Show More