The literature shows conflicting outcomes, making it difficult to determine how e-learning affects the performance of students in higher education. The effect of e-learning was studied and data has been gathered with the utilization of a variety of qualitative and quantitative methods, especially in relation to students' academic achievements and perceptions in higher education, according to literature review that has been drawn from articles published in the past two decades (2000-2020). The development of a sense of community in the on-line environment has been identified to be one of the main difficulties in e-learning education across this whole review. In order to create an efficient online learning community, it could be claimed that both instructors and students must work together to engage in extensive collaboration and engagement with both students and one another. Since educational institutions must be ready for the sustainability regarding e-learning adoption, the presented work argues that there is a requirement for better identification and knowledge of this. The results revealed that a university's competency and capacity for meeting elearning demand stemmed from actual requirement for the implementation of e-learning for specific academic environment hinged on sustainability related to implementation of e-learning. In addition to that, each university's local culture influenced and supported the implementation process, where the inhibiting and driving variables had a substantial effect on the continuity and outcome of the process. The range of digital tools that can successfully encourage social interactions as well as the learning community need to be further researched. With regard to higher education, there is an increase in innovative assessments of variables to assess learning results in the settings of digital learning. Researchers should carefully evaluate their study designs and study subjects in digital learning environments for this reason, as well as how to handle measuring learning.
Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show MoreIn this paper, an eco-epidemiological prey-predator system when the predator is subjected to the weak Allee effect, and harvesting was proposed and studied. The set of ordinary differential equations that simulate the system’s dynamic is constructed. The impact of fear and Allee’s effect on the system's dynamic behavior is one of our main objectives. The properties of the solution of the system were studied. All possible equilibrium points were determined, and their local, as well as global stabilities, were investigated. The possibility of the occurrence of local bifurcation was studied. Numerical simulation was used to further evaluate the global dynamics and understood the effects of varying parameters on the asymptotic behavior of t
... Show MoreAbstract
The research aims to determine the impact of the strategy performance evaluation and of the Standards (leadership, people, knowledge, processes, financial) in the achievement of organizational effectiveness in accordance with the dimensions (planning and setting goals, Exploitation of the Environment, achieve the goals, the ability to adapt, information management and communications) and the relationship between them, the problem of the research in the growing interest in the process of performance evaluation for organizations, the erroneous belief that the performance evaluation activity is useful, and the fact that performance evaluation process is one of the main tasks of the work of the Office of the Inspecto
... Show MoreProducts’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers. In this research, we pr
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreProducts’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.
 
... Show MoreBackground: Significant numbers of patients with spinal tuberculosis (TB), especially in developing countries, still present late after disease onset with severe neurological deficits.
Objective:This study was conducted to assess the outcome of surgery in patients with tuberculosis of the spine with motor deficits.
Type of the study: Retrospective study.
Methods: We retrospectively analyzed data obtained in all the patients with severe motor deficits due to spinal TB admitted to and surgically treated in four hospitals in Baghdad/Iraq during the period from January 2012 to January 2014. History, examination, imaging, histological, postoperative, a
... Show MoreThe aim of the current study was to evaluate the knowledge and perception of the fifth stage pharmacy students (college of pharmacy/ University of Baghdad /Iraq) regarding generic medicines. This study is a cross-sectional study carried in a college of pharmacy /University of Baghdad during the period from (November 2018- March 2019). The number of students included in the current study was 168 undergraduate stager pharmacists. A questionnaire was used to collect data of the study. Nearly 86% of the students said that they had heard of generic and brand medicines, and pharmacy was the main source of knowledge regarding generic medicines (66.7%). About (33.3%) of the respondents agreed that generic medicines are bioequivalent to br
... Show More