Shallow foundations have been commonly used to transfer load to soil layer within the permissible limits of settlement based on the bearing capacity of the soil. For most practical cases, the shape of the shallow foundation is of slight significance. Also, friction resistance forces in the first layers of soils are negligible due to non-sufficient surrounding surface area and compaction conditions. However, the bearing capacity of a shallow foundation can be increased by several techniques. Geocell is one of the geosynthetic tool applied mainly to reinforce soil. This study presents a numerical approach of honeycombed geocell steel panels reinforcing the sandy soil under shallow foundation, and several parameters are investigated such as the size and depth of honeycombed steel panels. The numerical results showed that honeycombed geocell reinforcement can increase the bearing capacity of soil by 65% and decrease the displacement of shallow foundation by 45%. This improvement of soil behavior under load resulted from the confinement of soil under foundation and increases the friction between soil and walls of geocells.
This study reported activity concentration of 238 U, 232 Th, 40 K in 50 soil samples AL-Nada district - Najaf Governorate - Iraq Measurement using gamma ray spectrometer NaI (TI) (3x3). The activity concentrations of natural radionuclides are found to range from (31.319 Bq.Kg-1 to (1.1583 ± 0.0821) Bq.Kg-1with average (11.851 0.281) Bq.Kg-1 of uranium 238U. From (1.117±0.048) Bq.Kg-1 to (23.948 ) Bq.Kg-1 with an average of (6.283 0.148 ( Bq.Kg-1 for thorium 232Th,.from(13.592±0.282) Bq.Kg-1 to (705.834 6.179) Bq.Kg-1 and average (265.494 1.445) Bq.Kg-1 potassium40K , equivalent radium from (12.489 0.328) Bq.Kg-1 to (84.199 1.911) Bq.Kg-
... Show MoreThe present study was performed to spotlight the potential role of soil bacteria in the Al-Rumaila oil field as a bioindicator of heavy metals pollution. For this purpose, nine soil samples were collected from different sites, with 20cm depth, to assess the pollution status depending on the total and available concentrations of heavy metals. The result indicates pollution of the studied soils with the following metals: Cd, Cu, Fe, Zn, and Pb. The mean of total concentration for all studied metals was higher than the allowed maximum limit based on the international limit:(3.394, 3.994, 39.993, 8844.979,150.372, and 103.347 µg/g), respectively. While measuring the total Metal concentration is important in determining the de
... Show MoreBackground: Failure of resin bases were a major disadvantage recorded in the constructed dentures. Reinforcements of the repair joint with nano fillers represent an attempt to enhance the strength and durability. The purpose of the research was to estimate the influence of nano fillers reinforcement with (ZrO2 and Al2O3) on impact and transverse strength of denture bases repaired with either cold or hot processing acrylic resin. Materials and methods: A hundred and forty (140) samples were processed with hot cured resin and organized in subgroups depending on the repair materials and condition (without repair (control), repair with hot cure, cold cure, hot and cold cure reinforced with either (5% Zr2O or 0.5% Al2O3). The samples in these
... Show MoreThe aim of this study is to understand the effect of addition carbon types on aluminum electrical conductivity which used three fillers of carbon reinforced aluminum at different weight fractions. The experimental results showed that electrical conductivity of aluminum was decreased by the addition all carbon types, also at low weight fraction of carbon black; it reached (4.53S/cm), whereas it was appeared highly increasing for each carbon fiber and synthetic graphite. At (45%) weight fraction the electrical conductivity was decreased to (4.36Scm) and (4.27Scm) for each carbon fiber and synthetic graphite, respectively. While it was reached to maximum value with carbon black. Hybrid composites were investigated also; the results exhibit tha
... Show MoreA particulate polymer composite material was prepared by reinforcing with the Aluminum Oxide (Al2O3) or Aluminum (Al) metallic particles with a particle size of (30) µm to an unsaturated Polyester Resin with a weight fraction of (5%, 10%, 15%, 20%).
Tensile test results showed the maximum value of elastic modulus reached (2400MPa.) in the case of reinforcing with (Al) particles with weight fraction (20%) and (1500 MPa.) in the case of reinforcing with (Al2O3) particles of the same weight fraction.
When the impact and the flexural strength tests were done, the results showed that flexural strength (F.S), maximum shear stress (τmax), impact strength
... Show MoreThis study investigates the impact of varying glass fiber-reinforced polymer (GFRP) stirrup spacing on the performance of doubly GFRP-reinforced concrete beams. The research focuses on assessing the behavior of GFRP-reinforced concrete beams, including load-carrying capacity, cracking, and deformability. It explores the feasibility and effectiveness of GFRP bars as an alternative to traditional steel reinforcement in concrete structures. Six concrete beams with a cross-section of 300 mm (wide) × 250 mm (deep), simply supported on a 2100 mm span, were tested. The beams underwent four-point bending with two concentrated loads applied symmetrically at one-third of the span length, resulting in a shear span (a)-to-depth (h) ratio of 2.
... Show MorePresents here in the results of comparison between the theoretical equation stated by Huang and Menq and laboratory model tests used to study the bearing capacity of square footing on geogrid-reinforced loose sand by performing model tests. The effects of several parameters were studied in order to study the general behavior of improving the soil by using the geogrid. These parameters include depth of first layer of reinforcement, vertical spacing of reinforcement layers, number of reinforcement layers and types of reinforcement layers The results show that the theoretical equation can be used to estimate the bearing capacity of loose sand.