Preferred Language
Articles
/
ZYbAPoYBIXToZYALeoDs
Numerical Modeling of Honeycombed Geocell Reinforced Soil
...Show More Authors

Shallow foundations have been commonly used to transfer load to soil layer within the permissible limits of settlement based on the bearing capacity of the soil. For most practical cases, the shape of the shallow foundation is of slight significance. Also, friction resistance forces in the first layers of soils are negligible due to non-sufficient surrounding surface area and compaction conditions. However, the bearing capacity of a shallow foundation can be increased by several techniques. Geocell is one of the geosynthetic tool applied mainly to reinforce soil. This study presents a numerical approach of honeycombed geocell steel panels reinforcing the sandy soil under shallow foundation, and several parameters are investigated such as the size and depth of honeycombed steel panels. The numerical results showed that honeycombed geocell reinforcement can increase the bearing capacity of soil by 65% and decrease the displacement of shallow foundation by 45%. This improvement of soil behavior under load resulted from the confinement of soil under foundation and increases the friction between soil and walls of geocells.

Crossref
Preview PDF
Quick Preview PDF
Publication Date
Thu Mar 10 2022
Journal Name
Buildings
Behavior of One-Way Reinforced Concrete Slabs with Polystyrene Embedded Arched Blocks
...Show More Authors

This study presents experimental and numerical investigations on seven one-way, reinforced concrete (RC) slabs with a new technique of slab weight reduction using polystyrene-embedded arched blocks (PEABs). All slabs had the same dimensions, steel reinforcement, and concrete compressive strength. One of these slabs was a solid slab, which was taken as a control slab, while the other six slabs were cast with PEABs. The main variables were the ratio of the length of the PEABs to the length of the slab (lp/L) and the ratio of the height of the PEABs to the total slab depth (hP/H). The minimum decrease in the ultimate load capacity was about 6% with a minimum reduction in the slab weight of 15%. In contrast, the maximum decrease in the

... Show More
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Strengthening of Reinforced Concrete T- Section Beams Using External Post-Tensioning Technique
...Show More Authors

This research is carried out to investigate the externally post-tensioning technique for strengthening RC beams. In this research, four T-section  RC beams having the same dimensions and material properties were casted and tested up to failure by applying two mid-third concentrated loads. Three of these beams are strengthened by using external tendons, while the remaining beam is kept without strengthening as a control beam. Two external strands of 12 mm diameter were fixed at each side of the web of the strengthened beams and located at depth of 200 mm from top fiber of the section (dps). So that the depth of strands to overall depth of the section ratio (dps

... Show More
View Publication Preview PDF
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Experimental Behavior of Laced Reinforced Concrete One Way Slab under Static Load
...Show More Authors

Test results of eight reinforced concrete one way slab with lacing reinforcement are reported. The tests were designed to study the effect of the lacing reinforcement on the flexural behavior of one way slabs. The test parameters were the lacing steel ratio, flexural steel ratio and span to the effective depth ratio. One specimen had no lacing reinforcement and the remaining seven had various percentages of lacing and flexural steel ratios. All specimens were cast with normal density concrete of approximately 30 MPa compressive strength. The specimens were tested under two equal line loads applied statically at a thirds part (four point bending test) up to failure. Three percentage of lacing and flexural steel ratios wer

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Results In Engineering
Effectiveness of embedded through-section technique in strengthening reinforced concrete spandrel beams
...Show More Authors

View Publication
Crossref (7)
Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Journal Of Engineering
Flexural Behavior of Reinforced Rubberized Reactive Powder Concrete Beams under Repeated Loads
...Show More Authors

Non-biodegradability of rubber tires contributes to pollution and fire hazards in the natural environment. In this study, the flexural behavior of the Rubberized Reactive Powder Concrete (RRPC) beams that contained various proportions and sizes of scrap tire rubber was investigated and compared to the flexural behavior of the regular RPC. Fresh properties, hardened properties, load-deflection relation, first crack load, ultimate load, and crack width are studied and analyzed. Mixes were made using micro steel fiber of the straight type, and they had an aspect ratio of 65. Thirteen beams were tested under two loading points (Repeated loading) with small-scale beams (1100 mm, 150 mm, 100 mm) size.

The fine aggregate

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Wed Oct 09 2019
Journal Name
Engineering, Technology & Applied Science Research
Serviceability of Reinforced Concrete Gable Roof Beams with Openings under Static Loads
...Show More Authors

This paper presents an analytical study on the serviceability of reinforced concrete gable roof beams with openings of different sizes, based on an experimental study which includes 13 concrete gable roof beams with openings under static loading. For deflection and crack widths under static loading at service stage, a developed unified calculation procedure has been submitted, which includes prismatic beams with one opening subjected to flexure concentrated force. The deflection has been calculated with two methods: the first method calculated deflections via relevant equations and the second was Direct Stiffness Method in which the beam is treated as a structural member with several segments constituting the portions with solid sec

... Show More
View Publication Preview PDF
Crossref (17)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings
Structural performance of fiber-reinforced lightweight concrete slabs with expanded clay aggregate
...Show More Authors

Crossref (4)
Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
Punching Shear Behavior of Reinforced Concrete Slabs under Fire using Finite Elements
...Show More Authors

The main aim of this paper is studied the punching shear and behavior of reinforced concrete slabs exposed to fires, the possibility of punching shear failure occurred as a result of the fires and their inability to withstand the loads. Simulation by finite element analysis is made to predict the type of failure, distribution temperature through the thickness of the slabs, deformation and punching strength. Nonlinear finite element transient thermal-structural analysis at fire conditions are analyzed by ANSYS package. The validity of the modeling is performed for the mechanical and thermal properties of materials from earlier works from literature to decrea

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 01 2022
Journal Name
International Journal Of Engineering Transactions C: Aspects
Axial Behavior of Concrete Filled-steel Tube Columns Reinforced with Steel Fibers
...Show More Authors

Concrete filled steel tube (CFST) columns are being popular in civil engineering due to their superior structural characteristics. This paper investigates enhancement in axial behavior of CFST columns by adding steel fibers to plain concrete that infill steel tubes. Four specimens were prepared: two square columns (100*100 mm) and two circular columns (100 mm in diameter). All columns were 60 cm in length. Plain concrete mix and concrete reinforced with steel fibers were used to infill steel tube columns. Ultimate axial load capacity, ductility and failure mode are discussed in this study. The results showed that the ultimate axial load capacity of CFST columns reinforced with steel fibers increased by 28% and 20 % for circular and square c

... Show More
Scopus (6)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Fri Nov 05 2021
Journal Name
Journal Of Architectural Environment & Structural Engineering Research
Strength & Conduct of Reinforced Concrete Corner Joint under Negative Moment Effect
...Show More Authors

The aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio, compressed reinforcing steel ratio,reinforcing steel size, corner joint shape on the strength of reinforcedconcrete Fc' and delve into it for the most accurate details and concreteconnections about the behavior and resistance of the corner joint ofreinforced concrete, Depending on the available studies and sources inaddition to our study, we concluded that each of these effects had a clearrole in the behavior and resistance of the corner joint of reinforced concreteunder the influence of the negative moment and yield stress. A studyof the types of faults that can be reinforced angle joints obtains detailsand conditions of c

... Show More
View Publication
Crossref (14)
Crossref