Horizontal wells have revolutionized hydrocarbon production by enhancing recovery efficiency and reducing environmental impact. This paper presents an enhanced Black Oil Model simulator, written in Visual Basic, for three-dimensional two-phase (oil and water) flow through porous media. Unlike most existing tools, this simulator is customized for horizontal well modeling and calibrated using extensive historical data from the South Rumaila Oilfield, Iraq. The simulator first achieves a strong match with historical pressure data (1954–2004) using vertical wells, with an average deviation of less than 5% from observed pressures, and is then applied to forecast the performance of hypothetical horizontal wells (2008–2011). The results validate the simulator’s reliability in estimating bottom-hole pressure (e.g., ±3% accuracy for HRU1 well) and water–oil ratios (e.g., WOR reduction of 15% when increasing horizontal well length from 1000 m to 2000 m). Notably, the simulator demonstrated that doubling the horizontal well length reduced WOR by 15% while increasing bottom-hole pressure by only 2%, highlighting the efficiency of longer wells in mitigating water encroachment. This work contributes to improved reservoir management by enabling efficient well placement strategies and optimizing extraction planning, thereby promoting both economic and resource-efficient hydrocarbon recovery.
Research aims to shed light on the concept of corporate failures , display and analysis the most distinctive models used to predicting corporate failure; with suggesting a model to reveal the probabilities of corporate failures which including internal and external financial and non-financial indicators, A tested is made for the research objectivity and its indicators weight and by a number of academics professionals experts, in addition to financial analysts and have concluded a set of conclusions , the most distinctive of them that failure is not considered a sudden phenomena for the company and its stakeholders , it is an Event passes through numerous stages; each have their symptoms that lead eve
... Show MoreThis research represents a practical attempt applied to calibrate and verify a hydraulic model for the Blue Nile River. The calibration procedures are performed using the observed data for a previous period and comparing them with the calibration results while verification requirements are achieved with the application of the observed data for another future period and comparing them with the verification results. The study objective covered a relationship of the river terrain with the distance between the assumed points of the dam failures along the river length. The computed model values and the observed data should conform to the theoretical analysis and the overall verification performance of the model by comparing it with anothe
... Show MoreAbstract
The study presents a mathematical model with a disaggregating approach to the problem of production planning of a fida Company; which belongs to the ministry of Industry. The study considers disaggregating the entire production into 3 productive families of (hydraulic cylinders, Aldblatt (dampers), connections hydraulics with each holds similar characteristics in terms of the installation cost, production time and stock cost. The Consequences are an ultimate use of the available production capacity as well as meeting the requirements of these families at a minimal cost using linear programming. Moreover, the study considers developing a Master production schedule that drives detailed material and production requi
... Show MoreConditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.
In order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.
The logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .
The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result. &nbs
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreAbstract
The current research aims to reveal the extent to which all scoring rubrics data for the electronic work file conform to the partial estimation model according to the number of assumed dimensions. The study sample consisted of (356) female students. The study concluded that the list with the one-dimensional assumption is more appropriate than the multi-dimensional assumption, The current research recommends preparing unified correction rules for the different methods of performance evaluation in the basic courses. It also suggests the importance of conducting studies aimed at examining the appropriateness of different evaluation methods for models of response theory to the
... Show MoreThe banking sector of all kinds is the backbone of the economy in all countries, as it is the main financier of most economic projects in order to achieve economic development and achieve stability, which contributes to providing the necessary resources in return for obtaining a profit margin in exchange for giving up his money and bearing credit risks. Among the aforementioned banking sectors are: Islamic banks that invest their capital in several forms in order to obtain profits that enable them to continue and grow, and the most important of these formulas is the Murabaha formula, which is summarized by the bank selling a commodity after owning it and then selling it to the applicant for this commodity based on a prior request
... Show More