—This paper studies the control motion of a single link flexible joint robot by using a hierarchical non-singular terminal sliding mode controller (HNTSMC). In comparison to the conventional sliding mode controller (CSMC), the proposed algorithm (NTSMC) not only can conserve characteristics of the convention CSMC, such as easy implementation, guaranteed stability and good robustness against system uncertainties and external disturbances, but also can ensure a faster convergence rate of the systems states to zero in a finite time and singularity free. The flexible joint robot (FJR) is a two degree of freedom (2DOF) nonlinear and underactuated system. The system here is modeled as a fourth order system by using Lagrangian method. Based on the modeling dynamics, the system is decomposed hierarchically into two-second order subsystems, namely, a rigid body and a flexible subsystem. In the first level, the sliding manifold for each subsystem is designed based on the NTS surfaces. Then, in the second level, the total sliding surface is constructed as the linear combination of NTS surfaces of two subsystems. Thereafter, a HNTSM control is obtained based on Lyapunov theorem to drive both subsystems to their equilibrium points in the finite time. Simulation results demonstrate the effectiveness of proposed scheme (HNTSMC) over (HCSMC).
In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show MoreIn this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl
... Show MoreProxy-based sliding mode control PSMC is an improved version of PID control that combines the features of PID and sliding mode control SMC with continuously dynamic behaviour. However, the stability of the control architecture maybe not well addressed. Consequently, this work is focused on modification of the original version of the proxy-based sliding mode control PSMC by adding an adaptive approximation compensator AAC term for vibration control of an Euler-Bernoulli beam. The role of the AAC term is to compensate for unmodelled dynamics and make the stability proof more easily. The stability of the proposed control algorithm is systematically proved using Lyapunov theory. Multi-modal equation of motion is derived using the Galerkin metho
... Show MoreBending effects on the transmission of optical signal are investigated on a single mode
optical fiber (SMOF) of 10 m length, core radius of 5 μm and optical refractive index difference
0.003. The bending radii (R) were between 0.08 and 0.0015 m. A great decrease in the amplitude is
shown for radii below 0.01 m. Sudden break down occurs for radii less than 0.0015 m. Birefringence
(B) is difficult to measure for long fibers. Meanwhile, B was found by comparing with calibrated
fiber of the same properties but of length of 0.075 m. The results show an increase in propagation
constant (Δβ) and the decrease in beat length (Lb), and show that bending decreases the critical radius
of curvature (Rc) related to B. The chang
The need for optical fibers has emerged for its ability to transmit information with less attenuation and over long distances. In this work, four optical fibers with core radii from 1 μm to 4.75 μm in steps of 1.25 μm and a numerical aperture of 0.17 were studied and their modes properties have been calculated at a wavelength of 633 nm by using RP Fiber Calculator (free version 2022). Also, the effect of increasing the core radius on these properties has been studied. Multimode fibers can be obtained when the radius of the fiber core is large compared to the operating wavelength of the fiber which is less than the cutoff wavelength of the mode. Otherwise, a single-mode fiber is obtained. It has been concluded that all the calculated p
... Show MoreThis paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
Finding a path solution in a dynamic environment represents a challenge for the robotics researchers, furthermore, it is the main issue for autonomous robots and manipulators since nowadays the world is looking forward to this challenge. The collision free path for robot in an environment with moving obstacles such as different objects, humans, animals or other robots is considered as an actual problem that needs to be solved. In addition, the local minima and sharp edges are the most common problems in all path planning algorithms. The main objective of this work is to overcome these problems by demonstrating the robot path planning and obstacle avoidance using D star (D*) algorithm based on Particle Swarm Optimization (PSO)
... Show MoreA non-polynomial spline (NPS) is an approximation method that relies on the triangular and polynomial parts, so the method has infinite derivatives of the triangular part of the NPS to compensate for the loss of smoothness inherited by the polynomial. In this paper, we propose polynomial-free linear and quadratic spline types to solve fuzzy Volterra integral equations (FVIE) of the 2nd kind with the weakly singular kernel (FVIEWSK) and Abel's type kernel. The linear type algorithm gives four parameters to form a linear spline. In comparison, the quadratic type algorithm gives five parameters to create a quadratic spline, which is more of a credit for the exact solution. These algorithms process kernel singularities with a simple techniqu
... Show More