—This paper studies the control motion of a single link flexible joint robot by using a hierarchical non-singular terminal sliding mode controller (HNTSMC). In comparison to the conventional sliding mode controller (CSMC), the proposed algorithm (NTSMC) not only can conserve characteristics of the convention CSMC, such as easy implementation, guaranteed stability and good robustness against system uncertainties and external disturbances, but also can ensure a faster convergence rate of the systems states to zero in a finite time and singularity free. The flexible joint robot (FJR) is a two degree of freedom (2DOF) nonlinear and underactuated system. The system here is modeled as a fourth order system by using Lagrangian method. Based on the modeling dynamics, the system is decomposed hierarchically into two-second order subsystems, namely, a rigid body and a flexible subsystem. In the first level, the sliding manifold for each subsystem is designed based on the NTS surfaces. Then, in the second level, the total sliding surface is constructed as the linear combination of NTS surfaces of two subsystems. Thereafter, a HNTSM control is obtained based on Lyapunov theorem to drive both subsystems to their equilibrium points in the finite time. Simulation results demonstrate the effectiveness of proposed scheme (HNTSMC) over (HCSMC).
Hand gestures are currently considered one of the most accurate ways to communicate in many applications, such as sign language, controlling robots, the virtual world, smart homes, and the field of video games. Several techniques are used to detect and classify hand gestures, for instance using gloves that contain several sensors or depending on computer vision. In this work, computer vision is utilized instead of using gloves to control the robot's movement. That is because gloves need complicated electrical connections that limit user mobility, sensors may be costly to replace, and gloves can spread skin illnesses between users. Based on computer vision, the MediaPipe (MP) method is used. This method is a modern method that is discover
... Show MoreA novel fractal design scheme has been introduced in this paper to generate microstrip bandpass filter designs with miniaturized sizes for wireless applications. The presented fractal scheme is based on Minkowski-like prefractal geometry. The space-filling property and self-similarity of this fractal geometry has found to produce reduced size symmetrical structures corresponding to the successive iteration levels. The resulting filter designs are with sizes suitable for use in modern wireless communication systems. The performance of each of the generated bandpass filter structures up to the 2nd iteration has been analyzed using a method of moments (MoM) based software IE3D, which is widely adopted in microwave research and in
... Show MoreThe present investigation aims to study the effect of heat treatment by quenching in different quenching media (salt water, water and oil) following by tempering on wear resistance of EN25 steel. EN25 steel is an alloy of medium carbon low alloy steel which is used for many applications requiring high tensile strength and wear resistance such as connecting rods, adapters and in power sectors extensively. The specimens are machined to 20 mm in length and 10 mm in diameter. This study is done by two stages: The first stage is done by austenitizing EN25 steel to 850 for 1 hr by quenching the specimens in three different quenching media and then tempered at 300 in air. While the second stage is performed by wear
... Show MoreThe Study aims to show the role of Flexible Budget in planning and control The Factory over head.
The study consists four reaserchs the First introduction for the role of Budget in planning and control The second definition Flexible Badget the Third Factory overhed cost variances Analysis The four conclusions and recommendations.
The factory overhead cost represents great ratio from product cost so the management must planning and control on cost Through the year by the Budget of factory over head in the beginning of the year and determind overhead rater.
The research aims to explain the role of the flexible budget in assessing the feedback resulting from deviations by comparing the actual results with the planned performance in light of the economic crisis that the world witnessed during the spread of Corona disease. As most companies, including the Electronic Industries Company, face the problem of controlling production costs and are trying hard to reduce these costs to the lowest level starting from measuring these costs and allocating them and distributing them to products. This helps in controlling deviations and thus the flexible budget becomes a tool that helps in controlling elements Costs
A novel design and implementation of a cognitive methodology for the on-line auto-tuning robust PID controller in a real heating system is presented in this paper. The aim of the proposed work is to construct a cognitive control methodology that gives optimal control signal to the heating system, which achieve the following objectives: fast and precise search efficiency in finding the on- line optimal PID controller parameters in order to find the optimal output temperature response for the heating system. The cognitive methodology (CM) consists of three engines: breeding engine based Routh-Hurwitz criterion stability, search engine based particle
swarm optimization (PSO) and aggregation knowledge engine based cultural algorithm (CA)
A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
This paper describes a new proposed structure of the Proportional Integral Derivative (PID) controller based on modified Elman neural network for the DC-DC buck converter system which is used in battery operation of the portable devices. The Dolphin Echolocation Optimization (DEO) algorithm is considered as a perfect on-line tuning technique therefore, it was used for tuning and obtaining the parameters of the modified Elman neural-PID controller to avoid the local minimum problem during learning the proposed controller. Simulation results show that the best weight parameters of the proposed controller, which are taken from the DEO, lead to find the best action and unsaturated state that will stabilize the Buck converter system performan
... Show MoreThis paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.