Background: techniques of image analysis have been used extensively to minimize interobserver variation of immunohistochemical scoring, yet; image acquisition procedures are often demanding, expensive and laborious. This study aims to assess the validity of image analysis to predict human observer’s score with a simplified image acquisition technique. Materials and methods: formalin fixed- paraffin embedded tissue sections for ameloblastomas and basal cell carcinomas were immunohistochemically stained with monoclonal antibodies to MMP-2 and MMP-9. The extent of antibody positivity was quantified using Imagej® based application on low power photomicrographs obtained with a conventional camera. Results of the software were employed
... Show MoreIn the current research work, a system of hiding a text in a digital grayscale image has been presented. The algorithm system that had been used was adopted two transforms Integer Wavelet transform and Discrete Cosine transformed. Huffman's code has been used to encoding the text before the embedding it in the cover image in the HL sub band. Peak Signal to Noise Ratio (PSNR) was used to measure the effect of embedding text in the watermarked image; also correlation coefficient has been used to measure the ratio of the recovered text after applying an attack on the watermarked image and we get a good result. The implementation of our proposed Algorithm is realized using MATLAB version 2010a.
In recent years, encryption technology has been developed rapidly and many image encryption methods have been put forward. The chaos-based image encryption technique is a modern encryption system for images. To encrypt images, it uses random sequence chaos, which is an efficient way to solve the intractable problem of simple and highly protected image encryption. There are, however, some shortcomings in the technique of chaos-based image encryption, such limited accuracy issue. The approach focused on the chaotic system in this paper is to construct a dynamic IP permutation and S-Box substitution by following steps. First of all, use of a new IP table for more diffusion of al
... Show MoreGeoreferencing process is one of the most important prerequisites for various geomatics applications; for example, photogrammetry, laser scan analysis, remotely sensing, spatial and descriptive data collection, and others. Georeferencing mostly involves the transformation of coordinates obtained from images that are inhomogeneous due to accuracy differences. The georeferencing depends on image resolution and accuracy level of measurements of reference points ground coordinates. Accordingly, this study discusses the subject of coordinate’s transformation from the image to the global coordinates system (WGS84) to find a suitable method that provides more accurate results. In this study, the Artificial Neural Network (ANN) method wa
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreCoronavirus disease (COVID-19) is an acute disease that affects the respiratory system which initially appeared in Wuhan, China. In Feb 2019 the sickness began to spread swiftly throughout the entire planet, causing significant health, social, and economic problems. Time series is an important statistical method used to study and analyze a particular phenomenon, identify its pattern and factors, and use it to predict future values. The main focus of the research is to shed light on the study of SARIMA, NARNN, and hybrid models, expecting that the series comprises both linear and non-linear compounds, and that the ARIMA model can deal with the linear component and the NARNN model can deal with the non-linear component. The models
... Show MoreSeveral stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the parti
... Show MoreThis paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conc
... Show More