In the last two decades, networks had been changed according to the rapid changing in its requirements. The current Data Center Networks have large number of hosts (tens or thousands) with special needs of bandwidth as the cloud network and the multimedia content computing is increased. The conventional Data Center Networks (DCNs) are highlighted by the increased number of users and bandwidth requirements which in turn have many implementation limitations. The current networking devices with its control and forwarding planes coupling result in network architectures are not suitable for dynamic computing and storage needs. Software Defined networking (SDN) is introduced to change this notion of traditional networks by decoupling control and forwarding planes. So, due to the rapid increase in the number of applications, websites, storage space, and some of the network resources are being underutilized due to static routing mechanisms. To overcome these limitations, a Software Defined Network based Openflow Data Center network architecture is used to obtain better performance parameters and implementing traffic load balancing function. The load balancing distributes the traffic requests over the connected servers, to diminish network congestions, and reduce underutilization problem of servers. As a result, SDN is developed to afford more effective configuration, enhanced performance, and more flexibility to deal with huge network designs.
This paper presents stochastic analysis using the perturbation method to model the structure of a container to verify the distributions of probability of maximum and minimum axial forces reactions in piles. The proposed simulation of a container port terminal under 11 scenarios of load combinations was presented. The probability distributions for live loads are assigned according to the input parameters of simulation data. Part of the load itself is implicitly combined such as vertical live load which includes the weight of equipment and containers and wind load. The structural model was simulated in the software STAAD Pro., while the statistical analyses were performed with MATLAB. The results demonstrated that, the most significant extern
... Show MoreDynamic loads highly influence soil properties and may cause real damage to structures and buildings. This article reports the experimental results from 24 tests to study the settlement of flexible and rigid raft foundation with different embedment depth rested on dense sandy soil. A small scale building model of dimension 200*200 mm and 320 mm in height was performed with reinforced concrete raft foundation of 10 mm thickness for flexible raft and 23 mm for rigid raft, The shaking table technique was used to simulate the seismic effect, the shaker was sat to give three different excitation frequencies 1,2,and3 Hz and displacement amplitude equal to 13 mm, the foundation was placed at
In most Reinforced Concrete (RC) buildings, the cross-section size of rectangular columns that conventionally used in these structures is larger than the thickness of their partitions. Consequently, a part of the column is protruded out of the wall which has some architectural disadvantages. Reducing the column size by using high strength concrete will result in slender column, thus the stability problem may be occurred. The stability problem is difficult to be overcome with rectangular columns. This paper study the effectiveness of using new types of columns called Specially Shaped Reinforced Concrete (SSRC) columns. Besides, the use of SSRC columns provides many structural advantage
The constructed building in the urban area is subject to wind characteristics due to the influence of surrounding buildings. The residential complexes currently being built in Iraq represent a case study for the subject of this research. Therefore, the objective of this study is to identify the interference effect because of adjacent buildings effects on the mid-rise building. The speed and pressure of the wind have been numerically simulated as well as wind load has been simulated by using a virtual wind tunnel which is available in Autodesk Robot Structural Analysis, RSA, software. Two identical adjacent buildings have been simulated and many coefficients were included in this study such as the spacing, directionality,
... Show MoreThis paper focuses on Load distribution factors for horizontally curved composite concrete-steel girder bridges. The finite-element analysis software“SAP2000” is used to examine the key parameters that can influence the distribution factors for horizontally curved composite steel
girders. A parametric study is conducted to study the load distribution characteristics of such bridge system due to dead loading and AASHTO truck loading using finite elements method. The key parameters considered in this study are: span-to-radius of curvature ratio, span length, number of girders, girders spacing, number of lanes, and truck loading conditions. The results have shown that the curvature is the most critical factor which plays an important
This paper addresses the nature of Spatial Data Infrastructure (SDI), considered as one of the most important concepts to ensure effective functioning in a modern society. It comprises a set of continually developing methods and procedures providing the geospatial base supporting a country’s governmental, environmental, economic, and social activities. In general, the SDI framework consists of the integration of various elements including standards, policies, networks, data, and end users and application areas. The transformation of previously paper-based map data into a digital format, the emergence of GIS, and the Internet and a host of online applications (e.g., environmental impact analysis, navigation, applications of VGI dat
... Show MoreThis study uses load factor and loss factor to determine the power losses of the electrical feeders. An approach is presented to calculate the power losses in the distribution system. The feeder’s technical data and daily operation recorded data are used to calculate and analyze power losses.
This paper presents more realistic method for calculating the power losses based on load and loss factors instead of the traditional methods of calculating the power losses that uses the RMS value of the load current which not consider the load varying with respect to the time. Eight 11kV feeders are taken as a case study for our work to calculate load factor, loss factor and power losses. Four of them (F40, F42, F43 and F
... Show MoreThe Dynamic Load Factor (DLF) is defined as the ratio between the maximum dynamic and static responses in terms of stress, strain, deflection, reaction, etc. DLF adopted by different design codes is based on parameters such as bridge span length, traffic load models, and bridge natural frequency. During the last decades, a lot of researches have been made to study the DLF of simply supported bridges due to vehicle loading. On the other hand, fewer works have been reported on continuous bridges especially with skew supports. This paper focuses on the investigation of the DLF for a highly skewed steel I-girder bridge, namely the US13 Bridge in Delaware State, USA. Field testing under various load passes of a weighed load vehicle was u
... Show MoreThe environmental surfaces hygiene of college premises like classrooms play role in spreading different pathogenic bacteria, furthermore a Medical students are often potential vectors for resistant bacteria to their entourage. This study aimed to assess bacterial contamination and their susceptibility to various antimicrobial agents in the educational classroom of Al-Kindy College of medicine in two classrooms: one occupied by clinical visitor and non-clinical visitor students to evaluate and determine its health risk. In this cross-sectional study, different sites of the educational classroom of Al-Kindy College of medicine were studied. Ninety-sex Different swab samples were collected from 8 different sites of college across bot
... Show More