Iris research is focused on developing techniques for identifying and locating relevant biometric features, accurate segmentation and efficient computation while lending themselves to compression methods. Most iris segmentation methods are based on complex modelling of traits and characteristics which, in turn, reduce the effectiveness of the system being used as a real time system. This paper introduces a novel parameterized technique for iris segmentation. The method is based on a number of steps starting from converting grayscale eye image to a bit plane representation, selection of the most significant bit planes followed by a parameterization of the iris location resulting in an accurate segmentation of the iris from the original image. A lossless Hexadata encoding method is then applied to the data, which is based on reducing each set of six data items to a single encoded value. The tested results achieved acceptable saving bytes performance for the 21 iris square images of sizes 256x256 pixels which is about 22.4 KB on average with 0.79 sec decompression average time, with high saving bytes performance for 2 iris non-square images of sizes 640x480/2048x1536 that reached 76KB/2.2 sec, 1630 KB/4.71 sec respectively, Finally, the proposed promising techniques standard lossless JPEG2000 compression techniques with reduction about 1.2 and more in KB saving that implicitly demonstrating the power and efficiency of the suggested lossless biometric techniques.
Transportability refers to the ease with which people, goods, or services may be transferred. When transportability is high, distance becomes less of a limitation for activities. Transportation networks are frequently represented by a set of locations and a set of links that indicate the connections between those places which is usually called network topology. Hence, each transmission network has a unique topology that distinguishes its structure. The most essential components of such a framework are the network architecture and the connection level. This research aims to demonstrate the efficiency of the road network in the Al-Karrada area which is located in the Baghdad city. The analysis based on a quantitative evaluation using graph th
... Show MoreVehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destina
... Show MoreA Geographic Information System (GIS) is a computerized database management system for accumulating, storage, retrieval, analysis, and display spatial data. In general, GIS contains two broad categories of information, geo-referenced spatial data and attribute data. Geo-referenced spatial data define objects that have an orientation and relationship in two or three-dimensional space, while attribute data is qualitative data that can be counted for recording and analysis. The main aim of this research is to reveal the role of GIS technology in the enhancement of bridge maintenance management system components such as the output results, and make it more interpretable through dynamic colour coding and more sophisticated vi
... Show MoreThe aim of this research is to develop qualitative workouts based on certain sensory perceptions for the development of offensive basketball abilities and to determine their impact on female pupils. Several findings, based on the au-thor's extensive expertise instructing basketball materials and our closeness to the sample, revealed deficits in some sensory perceptions “in the game of basketball”, which impair the accuracy of passing the ball to the best team-mate. It also affects the pace of dribbling and the difficulty of selecting the op-timal moment and distance to fire. Therefore, the researcher designs qualita-tive activities based on many sensory experiences, including distance, speed, force, and direction shift. In addition, the
... Show MoreIn this work, a fiber-optic biomedical sensor was manufactured to detect hemoglobin percentages in the blood. SPR-based coreless optical fibers were developed and implemented using single and multiple optical fibers. It was also used to calculate refractive indices and concentrations of hemoglobin in blood samples. An optical fiber, with a thickness of 40 nanometers, was deposited on gold metal for the sensing area to increase the sensitivity of the sensor. The optical fiber used in this work has a diameter of 125μm, no core, and is made up of a pure silica glass rod and an acrylate coating. The length of the fiber was 4cm removed buffer and the splicing process was done. It is found in practice that when the sensitive refractive i
... Show MoreRecently, there has been an increasing advancement in the communications technology, and due to the increment in using the cellphone applications in the diverse aspects of life, it became possible to automate home appliances, which is the desired goal from residences worldwide, since that provides lots of comfort by knowing that their appliances are working in their highest effi ciency whenever it is required without their knowledge, and it also allows them to control the devices when they are away from home, including turning them on or off whenever required. The design and implementation of this system is carried out by using the Global System of Mobile communications (GSM) technique to control the home appliances – In this work, an ele
... Show MoreWater quality sensors have recently received a lot of attention due to their impact on human health. Due to their distinct features, environmental sensors are based on carbon quantum dots (CQDs). In this study, CQDs were prepared using the electro-chemical method, where the structural and optical properties were studied. These quantum dots were used in the environmental sensor application after mixing them with three different materials: CQDs, Alq3 polymer and CQDs and Alq3 solutions using two different methods: drop casting and spin coating, and depositing them on silicon. The sensitivity of the water pollutants was studied for each case of the prepared samples after measuring the change in resistance of the samples at a temperature of
... Show More