Iris research is focused on developing techniques for identifying and locating relevant biometric features, accurate segmentation and efficient computation while lending themselves to compression methods. Most iris segmentation methods are based on complex modelling of traits and characteristics which, in turn, reduce the effectiveness of the system being used as a real time system. This paper introduces a novel parameterized technique for iris segmentation. The method is based on a number of steps starting from converting grayscale eye image to a bit plane representation, selection of the most significant bit planes followed by a parameterization of the iris location resulting in an accurate segmentation of the iris from the original image. A lossless Hexadata encoding method is then applied to the data, which is based on reducing each set of six data items to a single encoded value. The tested results achieved acceptable saving bytes performance for the 21 iris square images of sizes 256x256 pixels which is about 22.4 KB on average with 0.79 sec decompression average time, with high saving bytes performance for 2 iris non-square images of sizes 640x480/2048x1536 that reached 76KB/2.2 sec, 1630 KB/4.71 sec respectively, Finally, the proposed promising techniques standard lossless JPEG2000 compression techniques with reduction about 1.2 and more in KB saving that implicitly demonstrating the power and efficiency of the suggested lossless biometric techniques.
Multi-walled carbon nanotubes (MWCNTs) were functionalized by hexylamine (HA) in a promising, cost-effective, rapid and microwave-assisted approach. In order to decrease defects and remove acid-treatment stage, functionalization of MWCNTs with HA was carried out in the presence of diazonium reaction. Surface functionality groups and morphology of chemically-functionalized MWCNTS were characterized by FTIR, Raman spectroscopy, thermogravimetric analysis (DTG), and transmission electron microscopy (TEM). To reach a promising dispersibility in oil media, MWCNTs were functionalized with HA. While the cylindrical structures of MWCNTs were remained reasonably intact, characterization results consistently confirmed the sidewall-functionalization o
... Show MoreAbstract
The current research aims to examine the effectiveness of a training program for children with autism and their mothers based on the Picture Exchange Communication System to confront some basic disorders in a sample of children with autism. The study sample was (16) children with autism and their mothers in the different centers in Taif city and Tabuk city. The researcher used the quasi-experimental approach, in which two groups were employed: an experimental group and a control group. Children aged ranged from (6-9) years old. In addition, it was used the following tools: a list of estimation of basic disorders for a child with autism between (6-9) years, and a training program for children with autism
... Show MoreComparison is the most common and effective technique for human thinking: the human mind always judges something new based on its comparison with similar things that are already known. Therefore, literary comparisons are always clear and convincing. In our daily lives, we are constantly forced to compare different things in terms of quantity, quality, or other aspects. It is known that comparisons are used in literature in order for speech to be clear and effective, but when these comparisons are used in everyday speech, it is in order to convey the meaning directly and quickly, because many of these expressions used daily are comparisons. In our research, we discussed this comparison as a means of metaphor and expression in Russia
... Show More
An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to
... Show More