In this paper had been studied the characterization of the nanocatalyst (NiO) Mesh electrodes. For fuel cell. The catalyst is prepared and also the electrodes The structural were studied through the analysis of X-ray diffraction of the prepared nanocatalyst for determining the yielding phase and atomic force microscope to identify the roughness of prepared catalyst surface, Use has been nanocatalyst led to optimization of cell voltage, current densities & power for a fuel cell.
Zinc oxide nanoparticles sample is prepared by the precipitation method. This method involves using zinc nitrate and urea in aqueous solution, then (AgNO3) Solution with different concentrations is added. The obtained precipitated compound is structurally characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). The average particle size of nanoparticles is around 28nm in pure, the average particle size reaches 26nm with adding AgNO3 (0.05g in100ml =0.002 M) (0.1g in100ml=0.0058M), AgNO3 (0.2g in 100ml=0.01M) was 25nm. The FTIR result shows the existence of -CO, -CO2, -OH, and -NO2- groups in sample and oxides (ZnO, Ag2O).and used an
... Show MoreA variety of oxides were examined as additives to a V2O5/Al2O3 catalyst in order to enhance the catalytic performance for the vapor phase oxidation of toluene to benzoic acid. It was found that the modification with MoO3 greatly promoted the little reaction leading to improve catalyst performance in terms of toluene conversion and benzoic acid selectivity. The effect of catalyst surface area, catalyst promoters, reaction temperature, O2/toluene, steam/toluene, space velocity, and catalyst composition to catalyst performance were examined in order to increase the benzoic acid selectivity and yield.
The present investigation is concerned for the purification of impure zinc oxide (80-85 wt %) by using petroleum coke
(carbon content is 76 wt %) as reducing agent for the impure zinc oxide to provide pure zinc vapor, which will be
oxidized later by air to the pure zinc oxide.
The operating conditions of the reaction were studied in detail which are, reaction time within the range (10 to 30 min),
reaction temperature (900 to 1100 oC), air flow rate (0.2 to 1 l/min) and weight percentage of the reducing agent
(petroleum coke) in the feed (14 to 30 wt %).
The best operating conditions were (30 min) for the reaction time, (1100 oC) for the reaction temperature, (1 l/min) for
the air flow rate, and (30 wt %) of reducing
A hybrid nanoparticles light emitting diode (NPs-LED) was fabricated as layers of ITO/TPD:PMMA/ Eu2O3 / Alq3 / Al, by phase segregation method using spin coating technique. The NPs-LED hybrid device emitted light and consisted of three layers in a definite order placed on the transparent conducting oxide as an ITO substrate; the first layer was made of (N, N'-bis (3-methylphenyl) -N, N'-bis (phenyl) benzidine) (TPD) and polymethyl methacrylate (PMMA) polymers combined together. The second layer consisted of Europium (III) oxide (Eu2O3), while the third layer was Alq3, one of the most frequently-used electron transport layers.
The electroluminescence (EL) of N
... Show MoreThe main goal of our research is to synthesize novel nano Zn2+ complex with the 8-(2-(dansyl chloride)azo) adenine (LA) ligand as a pH sensor because of its advantageous properties, obtained from a single molecule. The Zn2⁺- LA complex was based on the production of an intensely dark purple-colored substance with λmax at 552 nm. Molar ratio of Zn2⁺- LA complex is a 1:2 in aqueous buffer. The optimum concentration (0.3) mM, pH (2-5.5), and time (0-3) hr at pH=5.5, that in the studies followed Lambert-law Beer'
In this paper, we focused on the investigated and studied the cold fusion reaction rate for D-D using the theory of Bose-Einstein condensation and depending on the quantum mechanics consideration. The quantum theory was based on the concept of single conventional of deuterons in Nickel-metal due to Bose-Einstein condensation, it has supplied a consistent description and explained of the experimental data. The analysis theory model has capable of explaining the physical behaviour of deuteron induced nuclear reactions in Nickel metals upon the five-star matter, it's the most expected for a quantitative predicted of the physical theory. Based on the Bose-Einstein condensation theorem formulation, we calculation the cold fusion reaction rate fo
... Show MoreThe study is situated in the Kokoe Region of Central Buton Regency, Southeast Sulawesi, specifically in the southern part of Kabaena Island. Its primary objective is to assess the potential of nickel laterite in the designated area. The research methodology involved microscopic analysis of bedrock using a polarizing microscope, examining the drilling data, including logging descriptions, and utilizing XRF geochemical analysis (Ni, Fe, Al2O3, Co, Mg, and SiO2) from 32 drilling sites. Both elementary grade and laterite profiles were visualized using Strater 5 software to simplify the representation of laterite profiles. Petrographic analysis divided the bedrock into two lithological units: serpentinized lherzolite and serpentinite. Th
... Show MoreThe Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current dens
... Show More
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show More