Preferred Language
Articles
/
ZRbyDIcBVTCNdQwC5DMt
Concrete strength development by using magnetized water in normal and self-compacted concrete
...Show More Authors
Abstract<p>The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and 9.1% was achieved for 7, 28, and 90 days, respectively. The mixture of SCC showed the highest improvement up to 16.2, 15.8, and 12.4% for 7, 28, and 90 days, respectively. The effect of MW is significant for 7 days compared to 28 and 90 days. An increase in the water content to cementitious material presents the more efficiency of MW, while the combined effect of MW and superplasticizer in SCC showed the best improvement with less water content for 35 MPa grade.</p>
Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Journal Of Engineering
Experimental Investigation of Crack Initiation and Growth in Concrete Slabs Placed Directly on Clayey Soil
...Show More Authors

The main objective of this study is to examine the impact of moisture concrete of clayey soil on the concrete slabs placed directly over it. This experimental study presents the mechanical properties of the concrete slab when placed on different clayey soil moisture content ranging from 0% to the optimum moisture content of 35%. The tests were performed on soil concrete specimens of 25*30*50 mm exposed to sprayed water curing conditions for 28 days. Tests of compressive strength, ultrasonic pulse velocity, crack depth and crack width were investigated through this paper. An ejection relationship between compressive strength of concrete and water content in the soil was observed, with a 26% increase with water increasing from 0% to 35%. T

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Oct 01 2021
Journal Name
Journal Of Engineering
Critical Evaluation for Grading and Fineness Modulus of Concrete Sands used in Sulaymaniyah City-Iraq
...Show More Authors

Fine aggregates used for concrete works in Sulaymaniyah city frequently fail to meet the standard requirements for gradation and fineness modulus in cement concrete. This paper aims to critically evaluate gradation, fineness modulus, and clay contents of various natural sands produced and used for concrete work in the region.  Sixteen field sand samples were collected from various sites in Darbandikhan (5 samples), Qalat Dizah (5 samples), Koysinjaq (5 samples), and Piramagroon (1 sample) confirming to ASTM D75. The field samples were parted into test specimens based on ASTM C702. Then, sieve analysis was carried out on the oven-dry test specimens in compliance with ASTM C136. The test results of fine aggregates wer

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Mon Feb 21 2022
Journal Name
Applied Sciences
The Behavior of Hybrid Fiber-Reinforced Concrete Elements: A New Stress-Strain Model Using an Evolutionary Approach
...Show More Authors

Several stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the parti

... Show More
Scopus (31)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2013
Journal Name
Journal Of Engineering
Numerical Prediction of Bond-Slip Behavior in Simple Pull-out Concrete Specimen
...Show More Authors

In this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of this

... Show More
Publication Date
Thu Jun 01 2023
Journal Name
Results In Engineering
Effectiveness of embedded through-section technique in strengthening reinforced concrete spandrel beams
...Show More Authors

View Publication
Crossref (4)
Crossref
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
Numerical Prediction of Bond-Slip Behavior in Simple Pull-Out Concrete Specimens
...Show More Authors

In this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of t

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
BEHAVIOR OF CONCRETE BEAMS REINFORCED IN SHEAR WITH CARBON FIBER REINFORCED POLYMER
...Show More Authors

Carbon fiber reinforced polymers (CFRP) were widely used in strengthening reinforced concrete members
in the last few years, these fibers consist mainly of high strength fibers which increase the member capacity in addition to changing the mode of failure of the reinforced concrete beams. Experimental and theoretical investigations were carried to find the behavior of reinforced concrete beams strengthened by CFRP in shear and bending. The experimental work included testing of 12 beams divided into 4 groups; each group contains 3 beams. The following parameters were taken into consideration: - Concrete crushing strength. - CFRP strengthening location (shear strengthening and both shear and flexure strengthening). Reinforced beams were

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Experimental and Numerical Comparison of Prestressed Perforated Concrete Rafters of Different Configurations
...Show More Authors
Abstract<p>This paper demonstrates an experimental and numerical study aimed to compare the influence of openings of different configurations on the flexural behavior of prestressed concrete rafters. The experimental program consisted of testing six simply supported prestressed concrete rafters; 5 rafters are perforated, and the other one is solid as a reference. All rafters were tested under monotonic midpoint load. The variable which has been investigated in this work was the opening’s configuration (quadrilateral or circular) with the same upper and lower chords depths. The results indicate improvement in the beam flexural behavior using the circular openings compared to the quadrilateral o</p> ... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Materials
Comparative Analysis of Reinforced Asphalt Concrete Overlays: Effects of Thickness and Temperature
...Show More Authors

Reflection cracking in asphalt concrete (AC) overlays is a common form of pavement deterioration that occurs when underlying cracks and joints in the pavement structure propagate through an overlay due to thermal and traffic-induced movement, ultimately degrading the pavement’s lifespan and performance. This study aims to determine how alterations in overlay thickness and temperature conditions, the incorporation of chopped fibers, and the use of geotextiles influence the overlay’s capacity to postpone the occurrence of reflection cracking. To achieve the above objective, a total of 36 prism specimens were prepared and tested using an overlay testing machine (OTM). The variables considered in this study were the thickness of the

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Jan 11 2021
Journal Name
Engineering, Technology & Applied Science Research
Impact Resistance of Bendable Concrete Reinforced with Grids and Containing PVA Solution
...Show More Authors

The development of new building materials, able of absorbing more energy is an active research area. Engineering Cementitious Composite (ECC) is a class of super-elastic fiberreinforced cement composites characterized by high ductility and tight crack width control. The use of bendable concrete produced from Portland Limestone Cement (PLC) may lead to an interest in new concrete mixes. Impact results of bendable concrete reinforced with steel mesh and polymer fibers will provide data for the use of this concrete in areas subject to impact loading. The experimental part consisted of compressive strength and impact resistance tests along with a result comparison with unreinforced concrete. Concrete samples, with dimensions of 100×

... Show More