To achieve safe security to transfer data from the sender to receiver, cryptography is one way that is used for such purposes. However, to increase the level of data security, DNA as a new term was introduced to cryptography. The DNA can be easily used to store and transfer the data, and it becomes an effective procedure for such aims and used to implement the computation. A new cryptography system is proposed, consisting of two phases: the encryption phase and the decryption phase. The encryption phase includes six steps, starting by converting plaintext to their equivalent ASCII values and converting them to binary values. After that, the binary values are converted to DNA characters and then converted to their equivalent complementary DNA sequences. These DNA sequences are converted to RNA sequences. Finally, the RNA sequences are converted to the amino acid, where this sequence is considered as ciphertext to be sent to the receiver. The decryption phase also includes six steps, which are the same encryption steps but in reverse order. It starts with converting amino acid to RNA sequences, then converting RNA sequences to DNA sequences and converting them to their equivalent complementary DNA. After that, DNA sequences are converted to binary values and to their equivalent ASCII values. The final step is converting ASCII values to alphabet characters that are considered plaintext. For evaluation purposes, six text files with different sizes have been used as a test material. Performance evaluation is calculated based on encryption time and decryption time. The achieved results are considered as good and fast, where the encryption and decryption times needed for a file with size of 1k are equal to 2.578 ms and 2.625 ms respectively, while the encryption and decryption times for a file with size of 20k are equal to 268.422 ms and 245.469 ms respectively.
The steganography (text in image hiding) methods still considered important issues to the researchers at the present time. The steganography methods were varied in its hiding styles from a simple to complex techniques that are resistant to potential attacks. In current research the attack on the host's secret text problem didn’t considered, but an improved text hiding within the image have highly confidential was proposed and implemented companied with a strong password method, so as to ensure no change will be made in the pixel values of the host image after text hiding. The phrase “highly confidential” denoted to the low suspicious it has been performed may be found in the covered image. The Experimental results show that the covere
... Show MoreBiological Activity of Complexes of Some Amino Acid
Big data usually running in large-scale and centralized key management systems. However, the centralized key management systems are increasing the problems such as single point of failure, exchanging a secret key over insecure channels, third-party query, and key escrow problem. To avoid these problems, we propose an improved certificate-based encryption scheme that ensures data confidentiality by combining symmetric and asymmetric cryptography schemes. The combination can be implemented by using the Advanced Encryption Standard (AES) and Elliptic Curve Diffie-Hellman (ECDH). The proposed scheme is an enhanced version of the Certificate-Based Encryption (CBE) scheme and preserves all its advantages. However
... Show MoreBackground and Aim: due to the rapid growth of data communication and multimedia system applications, security becomes a critical issue in the communication and storage of images. This study aims to improve encryption and decryption for various types of images by decreasing time consumption and strengthening security. Methodology: An algorithm is proposed for encrypting images based on the Carlisle Adams and Stafford Tavares CAST block cipher algorithm with 3D and 2D logistic maps. A chaotic function that increases the randomness in the encrypted data and images, thereby breaking the relation sequence through the encryption procedure, is introduced. The time is decreased by using three secure and private S-Boxes rather than using si
... Show MoreAASAH Enass J Waheed, Shatha MH Obaid, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2019 - Cited by 5
Advances in digital technology and the World Wide Web has led to the increase of digital documents that are used for various purposes such as publishing and digital library. This phenomenon raises awareness for the requirement of effective techniques that can help during the search and retrieval of text. One of the most needed tasks is clustering, which categorizes documents automatically into meaningful groups. Clustering is an important task in data mining and machine learning. The accuracy of clustering depends tightly on the selection of the text representation method. Traditional methods of text representation model documents as bags of words using term-frequency index document frequency (TFIDF). This method ignores the relationship an
... Show MoreIn this work, the performance of the receiver in a quantum cryptography system based on BB84 protocol is scaled by calculating the Quantum Bit Error Rate (QBER) of the receiver. To apply this performance test, an optical setup was arranged and a circuit was designed and implemented to calculate the QBER. This electronic circuit is used to calculate the number of counts per second generated by the avalanche photodiodes set in the receiver. The calculated counts per second are used to calculate the QBER for the receiver that gives an indication for the performance of the receiver. Minimum QBER, 6%, was obtained with avalanche photodiode excess voltage equals to 2V and laser diode power of 3.16 nW at avalanche photodiode temperature of -10
... Show MoreLED is an ultra-lightweight block cipher that is mainly used in devices with limited resources. Currently, the software and hardware structure of this cipher utilize a complex logic operation to generate a sequence of random numbers called round constant and this causes the algorithm to slow down and record low throughput. To improve the speed and throughput of the original algorithm, the Fast Lightweight Encryption Device (FLED) has been proposed in this paper. The key size of the currently existing LED algorithm is in 64-bit & 128-bit but this article focused mainly on the 64-bit key (block size=64-bit). In the proposed FLED design, complex operations have been replaced by LFSR left feedback technology to make the algorithm perform more e
... Show More