Objective: The aim of the study is to assess the personal hygiene of adult patients with
diabetic foot.
Methodology: A descriptive study was carried out in Baghdad teaching hospital, Al-Karama teaching hospital
and Al-Kindey teaching hospital for the period of 10/1/2006 to 1/9/2006. A purposive "non probability" sample
of (100) patient.
Questionnaire was constructed for achieving the purpose of the study. Data were collected through the
application of the questionnaire and interview technique. Data were analyzed through descriptive statistical
approach (frequency & percentage) and inferential statistical approach (chi-square & correlation) by using of
SPSS.
Results: The study results indicated that the
In this work the parameters of plasma (electron temperature Te,
electron density ne, electron velocity and ion velocity) have been
studied by using the spectrometer that collect the spectrum of
plasma. Two cathodes were used (Si:Si) P-type and deposited on
glass. In this research argon gas has been used at various values of
pressures (0.5, 0.4, 0.3, and 0.2 torr) with constant deposition time
4 hrs. The results of electron temperature were (31596.19, 31099.77,
26020.14 and 25372.64) kelvin, and electron density (7.60*1016,
8.16*1016, 6.82*1016 and 7.11*1016) m-3. Optical properties of Si
were determined through the optical transmission method using
ultraviolet visible spectrophotometer with in the range
(
The detection for Single Escherichia Coli Bacteria has attracted great interest and in biology and physics applications. A nanostructured porous silicon (PS) is designed for rapid capture and detection of Escherichia coli bacteria inside the micropore. PS has attracted more attention due to its unique properties. Several works are concerning the properties of nanostructured porous silicon. In this study PS is fabricated by an electrochemical anodization process. The surface morphology of PS films has been studied by scanning electron microscope (SEM) and atomic force microscope (AFM). The structure of porous silicon was studied by energy-dispersive X-ray spectroscopy (EDX). Details of experimental methods and results are given and discussed
... Show MoreRecent research has shown that a Deoxyribonucleic Acid (DNA) has ability to be used to discover diseases in human body as its function can be used for an intrusion-detection system (IDS) to detect attacks against computer system and networks traffics. Three main factor influenced the accuracy of IDS based on DNA sequence, which is DNA encoding method, STR keys and classification method to classify the correctness of proposed method. The pioneer idea on attempt a DNA sequence for intrusion detection system is using a normal signature sequence with alignment threshold value, later used DNA encoding based cryptography, however the detection rate result is very low. Since the network traffic consists of 41 attributes, therefore we proposed the
... Show MoreThe purpose of the present work is to calculate the expectation value of potential energy for different spin states (??? ? ???,??? ? ???) and compared it with spin states (??? , ??? ) for lithium excited state (1s2s3s) and Li- like ions (Be+,B+2) using Hartree-Fock wave function by partitioning techanique .The result of inter particle expectation value shows linear behaviour with atomic number and for each atom and ion the shows the trend ??? < ??? < ??? < ???
Despite the G protein-coupled receptors (GPCRs) being the largest family of signalling proteins at the surface of cells, their potential to be targeted in cancer therapy is still under-utilised. This review highlights the contribution of these receptors to the process of oncogenesis and points to some likely challenges that might be encountered in targeting them. GPCR-signalling pathways are often complex and can be tissue-specific. Cancer cells hijack these communication networks to their proliferative advantage. The role of selected GPCRs in the different hallmarks of cancer is examined to highlight the complexity of targeting these receptors for therapeutic benefit. Our
... Show MoreBacteriophages have the potential to eliminate both antibiotic-resistant and sensitive bacteria; as a result, they have become a major focus of such research. In contrast to antibiotics, which assault the entire bacterial population without discrimination, bacteriophages have a limited set of characteristics that allow them to target infectious microbes while avoiding friendly species (commensal microbiota). Nevertheless, large groups of naturally occurring bacteriophages that are well-differentiated and selective for the most clinically recognized pathogenic bacterial strains are required. Utilizing genetic engineering techniques that modify the target phage genome to synthesize phages with known characteristics in a brief period o
... Show More