Fractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal image compression, specifically for the block indexing methods based on the moment descriptor. Block indexing method depends on classifying the domain and range blocks using moments to generate an invariant descriptor that reduces the long encoding time. A comparison is performed between the blocked indexing technology and other fractal image techniques to determine the importance of block indexing in saving encoding time and achieving better compression ratio while maintaining image quality on Lena image.
Polymeric hollow fiber membrane is produced by a physical process called wet or dry/wet phase inversion; a technique includes many steps and depends on different factors (starting from selecting materials, end with post-treatment of hollow fiber membrane locally manufactured). This review highlights the most significant factors that affect and control the characterization and structure of ultrafiltration hollow fiber membranes used in different applications.
Three different types of polymers (polysulfone PSF, polyethersulfone PES or polyvinyl chloride PVC) were considered to study morphology change and structure of hollow fiber membranes in this review. These hollow fiber membranes were manufactured with different pro
... Show MoreRecent growth in transport and wireless communication technologies has aided the evolution of Intelligent Transportation Systems (ITS). The ITS is based on different types of transportation modes like road, rail, ocean and aviation. Vehicular ad hoc network (VANET) is a technology that considers moving vehicles as nodes in a network to create a wireless communication network. VANET has emerged as a resourceful approach to enhance the road safety. Road safety has become a critical issue in recent years. Emergency incidents such as accidents, heavy traffic and road damages are the main causes of the inefficiency of the traffic flow. These occurrences do not only create the congestion on the road but also increase the fuel consumption and p
... Show MoreThe energy requirements of corn silage harvesters and the application of precision agricultural techniques are essential for efficient and productive agricultural practices. The article aims to review previous studies on the energy requirements needed for different corn silage harvesting machines, and on the other hand, to present methods for measuring corn silage productivity directly in the field and monitoring it based on microcontrollers and artificial intelligence techniques. The process of making corn silage is done by cutting green fodder plants into small pieces, so special harvesters are used for this, called corn silage harvesters. The purpose of harvesting corn silage is to efficiently collect and store as many digestible nutrien
... Show MoreEnhancing fatigue resistance in asphalt binders and mixtures is crucial for prolonging pavement lifespan and improving road performance. Recent advancements in nanotechnology have introduced various nanomaterials such as alumina (NA), carbon nanotubes (CNTs), and silica (NS) as potential asphalt modifiers. These materials possess unique properties that address challenges related to asphalt fatigue. However, their effectiveness depends on proper dispersion and mixing techniques. This review examines the mixing methods used for each nanomaterial to ensure uniform distribution within the asphalt matrix and maximize performance benefits. Recent research findings are synthesized to elucidate how these nanomaterials and their mixing proce
... Show MoreOrthodontic wires facilitate the required dental adjustments in the context of orthodontic therapy. The archwire has played a crucial role in orthodontic treatment, and the increasing emphasis on aesthetic preferences from patients, as well as the development of composite and ceramic brackets, have prompted investigations into aesthetic archwires that complement these brackets. Orthodontic wires are produced using a diverse range of materials. The utilisation of all available wire types can improve patient comfort, decrease chairside time, and shorten the overall duration of treatment. The individual clinician must possess comprehensive knowledge and comprehension of the various requirements and alternatives throughout the therapeut
... Show MoreFace recognition and identity verification are now critical components of current security and verification technology. The main objective of this review is to identify the most important deep learning techniques that have contributed to the improvement in the accuracy and reliability of facial recognition systems, as well as highlighting existing problems and potential future research areas. An extensive literature review was conducted with the assistance of leading scientific databases such as IEEE Xplore, ScienceDirect, and SpringerLink and covered studies from the period 2015 to 2024. The studies of interest were related to the application of deep neural networks, i.e., CNN, Siamese, and Transformer-based models, in face recogni
... Show MoreThe geophysical testing is increasingly being employed in many geotechnical applications. It is preferred in monitoring the mechanical characteristics of the ground because of its economy, not time consuming and non-destructive nature. Seismic wave test is one of the geophysical methods which showed a potential in observing the general behaviour of the reinforced soil with stone columns. Findings in most cases showed that the seismic wave measurements was integrated with or compared to the conventional tests such as standard penetration test or cone penetration test. There was a noticeable success in identifying the enhancement achieved to the ground upon the strengthening with the column, specifically when the associated surveys can produc
... Show MoreThe rapid advancements in wireless technology and digital electronics have led to the widespread adoption of compact, intelligent devices in various aspects of daily life. These advanced systems possess the capability to sense environmental changes, process data, and communicate seamlessly within interconnected networks. Typically, such devices integrate low-power radio transmitters and multiple smart sensors, hence enabling efficient functionality across wide ranges of applications. Alongside these technological developments, the concept of the IoT has emerged as a transformative paradigm, facilitating the interconnection of uniquely identifiable devices through internet-based networks. This paper aims to provide a comprehensive ex
... Show MoreThe idea of using slender Reinforced Concrete (RC) columns with cross-shaped (+-shaped) instead of columns with square-shaped was discussed in this paper. The use of +-shaped columns provides many architectural and structural advantages, such as avoiding prominent columns edges and improved the structural response of member. Therefore, this study explores the structural response of slender +-shaped columns experimentally and numerically by nonlinear finite element analysis using Abaqus simulation tools. The results showed an excellent convergence in strength between numerical and test results with an average standard deviation of 0.05 and 0.07. Besides that, the use of +-shaped column