Fractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal image compression, specifically for the block indexing methods based on the moment descriptor. Block indexing method depends on classifying the domain and range blocks using moments to generate an invariant descriptor that reduces the long encoding time. A comparison is performed between the blocked indexing technology and other fractal image techniques to determine the importance of block indexing in saving encoding time and achieving better compression ratio while maintaining image quality on Lena image.
LED is an ultra-lightweight block cipher that is mainly used in devices with limited resources. Currently, the software and hardware structure of this cipher utilize a complex logic operation to generate a sequence of random numbers called round constant and this causes the algorithm to slow down and record low throughput. To improve the speed and throughput of the original algorithm, the Fast Lightweight Encryption Device (FLED) has been proposed in this paper. The key size of the currently existing LED algorithm is in 64-bit & 128-bit but this article focused mainly on the 64-bit key (block size=64-bit). In the proposed FLED design, complex operations have been replaced by LFSR left feedback technology to make the algorithm perform more e
... Show MoreWith and without the use of magnetic fields, titanium dioxide (TiO2) nanoparticles were synthesized using the hydrothermal method at extremely high temperatures and pressures. Titanium tetra isopropoxide [Ti(C12H28O4)] was used for the preparation, which was performed at pH 7 and under temperatures of 160 and 190 ˚C. UV spectroscopy, XRD crystallography, FE-SEM microscopy were used for characterizations. From UV spectroscopy, the energy gap values were clearly affected by the increase in temperature and the presence of the magnetic field. At the temperatures of 160 and 190 oC for TiO2 without magnetic field, FE-SEM microscopy images have shown an average c
... Show MorePulsed laser deposition (PLD) technique was applied to prepared Chromium oxide (Cr2O3) nanostructure doped with Titanium oxide (TiO2) thin films at different concentration ratios 3,5,7 and 9 wt % of TiO2. The effect of TiO2 dopant on the average size of crystallite of the synthesized nanostructures was examined by X-ray diffraction. The morphological properties were discussed using atomic force microscopy(AFM). Observed optical band gap value ranged from 2.68 eV to 2.55 eV by ultraviolet visible(UV-Vis.) absorption spectroscopy with longer wave length shifted in comparison with that of the bulk Cr2O3 ~3eV. This indicated that the synthesized samples a
... Show MoreChromium oxide (Cr2O3) doped ZnO nanoparticles were prepared by pulsed laser deposition (PLD) technique at different concentration ratios (0, 3, 5, 7 and 9 wt %) of ZnO on glass substrate. The effects of ZnO dopant on the average crystallite size of the synthesized nanoparticles was examined By X-ray diffraction. The morphological features were detected using atomic force microscopy (AFM). The optical band gap value was observed to range between 2.78 to 2.50 eV by UV-Vis absorption spectroscopy, with longer wavelength shifted in comparison with that of the bulk Cr2O3 (~3eV). Gas sensitivity, response, and recovery times of the sensor in the presence of NH3
... Show MoreHydrophobic silica aerogels were successfully preparation by an ambient pressure drying method from sodium silicate (Na2SiO3) with different pH values (5, 6, 7, 8, 9 and 10). In this study, acidic HCl (1M), a basic NH4OH (1M) were selected as a catalyst to perform the surface modification in a TMCS (trimethylchlorosilane) solution. The surface chemical modification of the aerogels was assured by the Fourier transform infrared (FTIR) spectroscopic studies. Other physical properties, such as pore volume and pore size and specific surface area were determined by Brunauer-Emmett- Teller (BET) method. The effect of pH values on the bulk density of aerogel. The sol–gel parameter pH value in the sol, have marked effects on the physical proper
... Show MoreReservoir rock typing integrates geological, petrophysical, seismic, and reservoir data to identify zones with similar storage and flow capacities. Therefore, three different methods to determine the type of reservoir rocks in the Mushrif Formation of the Amara oil field. The first method represents cluster analysis, a statistical method that classifies data points based on effective porosity, clay volume, and sonic transient time from well logs or core samples. The second method is the electrical rock type, which classifies reservoir rocks based on electrical resistivity. The permeability of rock types varies due to differences in pore geometry, mineral composition, and fluid saturation. Resistivity data are usually obtained from w
... Show MoreThis work aims to fabricate two types of plasmonic nanostructures by electrical exploding wire (EEW) technique and study the effects of the different morphologies of these nanostructures on the absorption spectra and Surface-Enhanced Raman Scattering (SERS) activities, using Rhodamine 6G as a probe molecule. The structural properties of these nanostructures were examined using X-Ray diffraction (XRD). The morphological properties were examined using field emission scanning electron microscopy (FESEM) and scanning transmission electron microscopy (STEM). The absorption spectra of the mixed R6G laser dye (concentration 1×10-6 M) with prepared nanostructures were examined by double beam UV-Vis Spectrophotometer. The Raman spe
... Show MoreIn this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show More