Fractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal image compression, specifically for the block indexing methods based on the moment descriptor. Block indexing method depends on classifying the domain and range blocks using moments to generate an invariant descriptor that reduces the long encoding time. A comparison is performed between the blocked indexing technology and other fractal image techniques to determine the importance of block indexing in saving encoding time and achieving better compression ratio while maintaining image quality on Lena image.
Bootstrap is one of an important re-sampling technique which has given the attention of researches recently. The presence of outliers in the original data set may cause serious problem to the classical bootstrap when the percentage of outliers are higher than the original one. Many methods are proposed to overcome this problem such Dynamic Robust Bootstrap for LTS (DRBLTS) and Weighted Bootstrap with Probability (WBP). This paper try to show the accuracy of parameters estimation by comparison the results of both methods. The bias , MSE and RMSE are considered. The criterion of the accuracy is based on the RMSE value since the method that provide us RMSE value smaller than other is con
... Show MoreThe present paper addresses cultivation of Chlorella vulgaris microalgae using airlift photobioreactor that sparged with 5% CO 2 /air. The experimental data were compared with that obtained from bioreactor aerated with air and unsparged bioreactor. The results showed that the concentration of biomass is 0.36 g l -1 in sparged bioreactor with CO2/air, while, the concentration of biomass reached to 0.069 g l -1 in the unsparged bioreactor. They showed also that aerated ioreactor.with CO2/air gives more biomass production even the bioreactor was aerated with air. This study proved that application of sparging system for ultivation of Chlorella vulgaris microalgae using either CO2/air mixture or air has a significant
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreGas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t
This study came for the reason that some project administrations still do not follow the appropriate scientific methods that enable them to perform their work in a manner that achieves the goals for which those projects arise, in addition to exceeding the planned times and costs, so this study aims to apply the methods of network diagrams in Planning, scheduling and monitoring the project of constructing an Alzeuot intersection bridge in the city of Ramadi, as the research sample, being one of the strategic projects that are being implemented in the city of Ramadi, as well as being one of the projects that faced during its implementation Several of problems, the project problem was studied according to scientific methods through the applica
... Show MorePreparing teacher occupies the attention of many thinkers and philosophers since the age of
kaldinics ( people of mesoptam / 2342 pH ) to the Islamic age where moslems philosophers
focus their attention on thought and philosophy where the philosophy of that teaching
depends on : teacher , student and family begin .
So , the issue of preparing and training teacher occupies the attention of education scientists
depending on his vital and important role in implementing of teaching policies in philosophies
and Islamic educational thought , therefore , the preparing and development of the teacher
regards as one of the basics of teaching development because of its importance in
development of teaching performance and th
Coronavirus disease (COVID-19) is an acute disease that affects the respiratory system which initially appeared in Wuhan, China. In Feb 2019 the sickness began to spread swiftly throughout the entire planet, causing significant health, social, and economic problems. Time series is an important statistical method used to study and analyze a particular phenomenon, identify its pattern and factors, and use it to predict future values. The main focus of the research is to shed light on the study of SARIMA, NARNN, and hybrid models, expecting that the series comprises both linear and non-linear compounds, and that the ARIMA model can deal with the linear component and the NARNN model can deal with the non-linear component. The models
... Show More