Abstract Bilastine, a second-generation antihistamine, is commonly prescribed for managing allergic rhinoconjunctivitis and urticaria due to its prolonged action. However, its therapeutic potential is constrained by poor water solubility and low oral bioavailability. This study aimed to enhance bilastine dissolution and patient compliance by formulating a nanosuspension-based orodispersible film (ODF). An anti-solvent precipitation method was employed to produce nanosuspension using different hydrophilic stabilizers (Soluplus®, Poloxamer 188, and PEG 6000). The influence of formulation parameters, such as the stabilizer ratio, the anti-solvent ratio, stirring speed, and the stabilizer type, on particle size and polydispersity index (PDI) was optimized using an experimental design approach. The optimal formulation, with a 1:1 stabilizer-to-drug ratio using Soluplus®, a 6:1 anti-solvent to solvent ratio, and a stirring rate of 820 rpm, yielded nanoparticles with a mean particle size of 83.8 nm and a narrow PDI of 0.019. This formulation also significantly enhanced the drug's dissolution rate in phosphate buffer pH 6.8, releasing 92.02% of bilastine within 90 minutes. Further characterization of the lyophilized nanoparticles using FESEM, FTIR, and XRD, confirmed their amorphous nature and drug compatibility. The optimized nanosuspension was subsequently incorporated into ODFs via the solvent-casting technique, with the optimal film formulated with a 1:1 ratio of PVA and HPMC E5 as the film-forming polymers, demonstrating a rapid disintegration time of 18 seconds and releasing 93.16% of bilastine within 6 minutes. These results confirm the successful formulation of bilastine into ODFs, significantly improving its dissolution compared to the pure drug.
Ag2O (Silver Oxide) is an important p-type (in chasm to most oxides which were n-type), with a high conductivity semiconductor. From the optical absorbance data, the energy gap value of the Ag2O thin films was 1.93 eV, where this value substantially depends on the production method, vacuum evaporation of silver, and optical properties of Ag2O thin films are also affected by the precipitation conditions. The n-type and p-type silicon substrates were used with porous silicon wafers to precipitate ±125 nm, as thick Ag2O thin film by thermal evaporation techniques in vacuum and via rapid thermal oxidation of 400oC and oxidation time 95 s, then characterized by measurement of
... Show MoreThis research mainly aims to analyze local development strategy in Baghdad Governance, build the Strategic Model based on the study area's spatial interaction, and achieve the Trinity of Excellence based on the global model of excellence.
This research applied SWOT strategic analysis for the strengths and weaknesses of the internal environment and opportunities and threats of the external environment for the provincial council. In conclusion, the research specifies appropriate alternatives and choosing the best in line with the reality of the Baghdad Provincial Council. Also, the strategic goals in the national plan and the spatial interaction of the development goals,
... Show MoreAdvanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m
... Show More