A simple straightforward mathematical method has been developed to cluster grid nodes on a boundary segment of an arbitrary geometry that can be fitted by a relevant polynomial. The method of solution is accomplished in two steps. At the first step, the length of the boundary segment is evaluated by using the mean value theorem, then grids are clustered as desired, using relevant linear clustering functions. At the second step, as the coordinates cell nodes have been computed and the incremental distance between each two nodes has been evaluated, the original coordinate of each node is then computed utilizing the same fitted polynomial with the mean value theorem but reversibly.
The method is utilized to predict
... Show MoreThis study investigated the cubic intuitionistic fuzzy set of TM-algebra as a generalization of the cubic set. First, a cubic intuitionistic ideal and a cubic intuitionistic T-ideal are defined, followed by a discussion of their properties. Furthermore, the level set of a cubic intuitionistic TM-algebra is defined, and the relationship between a cubic intuitionistic level set and the cubic intuitionistic T-ideal is established. A novel definition of a cubic intuitionistic set under homomorphism is proposed, and several significant results are demonstrated.
This paper refers to studying some types of ideals, specifically cubic bipolar ideals and cubic bipolar T-ideals of TM algebra. It also introduces a cubic bipolar sub-TM-algebra and several important properties of these concepts. The relationships between these ideals and characterizations of cubic bipolar T-ideals are investigated.
An intuitionistic fuzzy set was exhibited by Atanassov in 1986 as a generalization of the fuzzy set. So, we introduce cubic intuitionistic structures on a KU-semigroup as a generalization of the fuzzy set of a KU-semigroup. A cubic intuitionistic k-ideal and some related properties are introduced. Also, a few characterizations of a cubic intuitionistic k-ideal are discussed and new cubic intuitionistic fuzzy sets in a KU-semigroup are defined.
This study aims to numerically simulate the flow of the salt wedge by using computational fluid dynamics, CFD. The accuracy of the numerical simulation model was assessed against published laboratory data. Twelve CFD model runs were conducted under the same laboratory conditions. The results showed that the propagation of the salt wedge is inversely proportional to the applied freshwater discharge and the bed slope of the flume. The maximum propagation is obtained at the lowest discharge value and the minimum slope of the flume. The comparison between the published laboratory results and numerical simulation shows a good agreement. The range of the relative error varies between 0 and 16% with an average of 2% and a roo
... Show MoreA general velocity profile for a laminar flow over a flat plate with zero incidence is obtained by employing a new boundary condition to the other available boundary conditions. The general velocity profile is mathematically simple and nearest to the exact solution. Also other related values, boundary layer thickness, displacement thickness, momentum thickness and coefficient of friction are nearest to the exact solution compared with other corresponding values for other researchers.
A general velocity profile for a laminar flow over a flat plate with zero incidence is obtained by employing a new boundary condition to the other available boundary conditions. The general velocity profile is mathematically simple and nearest to the exact solution. Also other related values, boundary layer thickness, displacement thickness, momentum thickness and coefficient of friction are nearest to the exact solution compared with other corresponding values for other researchers.
A numerical method is developed to obtain two-dimensional velocity and pressure distribution through a cylindrical pipe with cross jet flows. The method is based on solving partial differential equations for the conservation of mass and momentum by finite difference method to convert them into algebraic equations. This well-known problem is used to introduce the basic concepts of CFD including: the finite- difference mesh, the discrete nature of the numerical solution, and the dependence of the result on the mesh refinement. Staggered grid implementation of the numerical model is used. The set of algebraic equations is solved simultaneously by “SIMPLE” algorithm to obtain velocity and pressure distribution within a pipe. In order to
... Show More