This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spent to achieve the best classification accuracy.
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreThe aim of this work is study the partical distribution function g(r12,r1) for Carbon ion cases (C+2,C+3,C+4) in the position space using Hartree-Fock's Wave function, and the partitioning technique for each shell which is represented by Carbon Ions [C+2 (1s22s2)], [C+3 (1s22s)] and [C+4 (1s2)]. A comparision has been made among the three Carbon ions for each shell. A computer programs (MATHCAD ver. 2001i) has been used texcute the results.
Optimization is essentially the art, science and mathematics of choosing the best among a given set of finite or infinite alternatives. Though currently optimization is an interdisciplinary subject cutting through the boundaries of mathematics, economics, engineering, natural sciences, and many other fields of human Endeavour it had its root in antiquity. In modern day language the problem mathematically is as follows - Among all closed curves of a given length find the one that closes maximum area. This is called the Isoperimetric problem. This problem is now mentioned in a regular fashion in any course in the Calculus of Variations. However, most problems of antiquity came from geometry and since there were no general methods to solve suc
... Show MoreThe control of prostheses and their complexities is one of the greatest challenges limiting wide amputees’ use of upper limb prostheses. The main challenges include the difficulty of extracting signals for controlling the prostheses, limited number of degrees of freedom (DoF), and cost-prohibitive for complex controlling systems. In this study, a real-time hybrid control system, based on electromyography (EMG) and voice commands (VC) is designed to render the prosthesis more dexterous with the ability to accomplish amputee’s daily activities proficiently. The voice and EMG systems were combined in three proposed hybrid strategies, each strategy had different number of movements depending on the combination protocol between voic
... Show MoreAbstract
Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia
... Show More