Systemic lupus erythematosus (SLE) is one of the autoimmune disorders, generated by a production of specific autoantibodies against self-antigens before the occurrence of clinical symptoms. The etiology of disease is still unknown, although there have been several infectious agents that have been associated with SLE development, especially in genetically predisposed individuals. Herpes simplex virus-I and -II (HSV-I and -II) and Toxoplasma gondiiare two infectious agents that have been suggested to be involved in SLE etiology. Accordingly, the present study assessed anti- HSV-I and -II and anti-T. gondii IgG and IgM antibodies by enzyme linked immunosorbent assay in sera of 64 SLE female patients and 32 healthy control women. The patients were distributed into two equal subgroups (32 cases in each subgroup); the first included patients with arthritis, while the second group involved patients that have renal complications (nephritis). In both subgroups of SLE patients, there was no evidence for sero-positive cases for anti-HSV-I and -II and anti-T. gondii antibodies, and all studied patients were sero-negative for theseantibodies. These results may suggest that HSV-I and -II and T. gondii infections have no role in SLE etiology.
Nanofluid treatment of oil reservoirs is being developed to enhance oil recovery and increase residual trapping capacities of CO2 at the reservoir scale. Recent studies have demonstrated good potential for silica nanoparticles for enhanced oil recovery (EOR) at ambient conditions. Nanofluid composition and exposure time have shown significant effects on the efficiency of EOR. However, there is a serious lack of information regarding the influence of temperature on nanofluid performance; thus the effects of temperature, exposure time and particle size on wettability alteration of oil-wet calcite surface were comprehensively investigated; moreover, the stability of the nanofluids was examined. We found that nanofluid treatment is more efficie
... Show MoreInfluence of metal nanoparticles synthesized by microorganisms upon soil-borne microscopic fungus Aspergillus terreus K-8 was studied. It was established that the metal nanoparticles synthesized by microorganisms affect the enzymatic activity of the studied culture. Silver nanoparticles lead to a decrease in cellulase activity and completely suppress the amylase activity of the fungus, while copper nanoparticles completely inhibit the activity of both the cellulase complex and amylase. The obtained results imply that the large-scale use of silver and copper nanoparticles may disrupt biological processes in the soil and cause change in the physiological and biochemical state of soil-borne microorganisms as well.
This work was carried to study the capability of activated alumina from bauxite compared with activated carbon adsorption capability to reduce the color content from Al-Hilla Textile Company wastewater. Six dyes were studied from two types(reactive and dispersed) namely (blue, red, yellow) from wastewater and aqueous solutions.
Forty eight experiments were carried out to study the effect of various initial conditions (bed height, flow rate, initial concentration, pH value, temperature, and competitive adsorption) on adsorption process.
The results showed that the adsorption process using activated carbon insured a good degree of color reduction reaching (99.7%) and was better than activated bauxite which reached (95%).
In this study, the electro-hydraulic servo system for speed control of fixed displacement hydraulic motor using proportional valve and (PID) controller is investigated theoretically ,experimentally and simulation . The theoretical part includes the derivation of the nonlinear mathematical model equation of (valve – motor ) combination system and the derivation of the transfer function for the complete hydraulic system , the stability test of the system during the operation through the transfer function using MATLAB package
V7.1 have been done. An experimental part includes design and built hydraulic test rig and simple PID controller .The best PID gains have been calculated experimentally and simulation, speed control performance te
Pyrolysis of virgin polyethylene plastics was studied in order to produce hydrocarbon liquid fuel. The pyrolysis process carried out for low and high-density polyethylene plastics in open system batch reactor in temperature range of 370 to 450°C.
Thermo-gravimetric analysis of the virgin plastics showed that the degradation ranges were between 326 and 495 °C. The results showed that the optimum temperature range of pyrolysis of polyethylene plastics that gives highest liquid yield (with specific gravity between 0.7844 and 0.7865) was 390 to 410 °C with reaction time of about 35 minutes. Fourier Transform Infrared spectroscopy gave a quite evidence that the produced hydrocarbon liquid fuel consisted ma
... Show Moreالحمد الله أولا واخرا وبعد .. إن الواقع الذي عايشه الناس في ظل دولة المسلمين منذ إقامة دولة الإسلام بعد بعثة الرسول الكريم (صلى الله عليه وسلم ) في المدينة ولأكثر من أربعة عشر قرنا نرى إنه عاش في كنف هذه الدولة الكبيرة من بلاد الصين شرقا وإلى وسط أوربا وجنوب فرنسا غربا العشرات من الملل و الأديان والأجناس وممن لا يدينون بالإسلام وهم كما تحفظ لهم دولة الإسلام منهم وعيشهم الرغيد فهم يمارسون شعائرهم وطقوسهم الديني
... Show MoreTo evaluate the effectiveness of different microwave irradiation exposure times on the disinfection of dental stone samples immersed in different solutions, and its affect on the dimensional accuracy and surface porosity. Dental stone casts were inoculated with an isolate of Bacillus subtilis to examine the efficiency of microwave irradiation as a disinfection method while immersed in different solutions; water, 40% sodium chloride, or without immersion for different durations. Dimensional accuracy and surface porosity were also evaluated. Significant reduction in colony counts of Bacillus subtilis were observed after 5 minutes of microwave irradiation of immersed dental casts in water and NaCl solution. No evidence of growth was observed a
... Show More