As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications.
The implementation of technology in the provision of public services and communication to citizens, which is commonly referred to as e-government, has brought multitude of benefits, including enhanced efficiency, accessibility, and transparency. Nevertheless, this approach also presents particular security concerns, such as cyber threats, data breaches, and access control. One technology that can aid in mitigating the effects of security vulnerabilities within e-government is permissioned blockchain. This work examines the performance of the hyperledger fabric private blockchain under high transaction loads by analyzing two scenarios that involve six organizations as case studies. Several parameters, such as transaction send ra
... Show MoreData security is a significant requirement in our time. As a result of the rapid development of unsecured computer networks, the personal data should be protected from unauthorized persons and as a result of exposure AES algorithm is subjected to theoretical attacks such as linear attacks, differential attacks, and practical attacks such as brute force attack these types of attacks are mainly directed at the S-BOX and since the S-BOX table in the algorithm is static and no dynamic so this is a major weakness for the S-BOX table, the algorithm should be improved to be impervious to future dialects that attempt to analyse and break the algorithm in order to remove these weakness points, Will be generated dynamic substitution box (S-B
... Show MoreOffline Arabic handwritten recognition lies in a major field of challenge due to the changing styles of writing from one individual to another. It is difficult to recognize the Arabic handwritten because of the same appearance of the different characters. In this paper a proposed method for Offline Arabic handwritten recognition. The proposed method for recognition hand-written Arabic word without segmentation to sub letters based on feature extraction scale invariant feature transform (SIFT) and support vector machines (SVMs) to enhance the recognition accuracy. The proposed method experimented using (AHDB) database. The experiment result show (99.08) recognition rate.
In computer vision, visual object tracking is a significant task for monitoring
applications. Tracking of object type is a matching trouble. In object tracking, one
main difficulty is to select features and build models which are convenient for
distinguishing and tracing the target. The suggested system for continuous features
descriptor and matching in video has three steps. Firstly, apply wavelet transform on
image using Haar filter. Secondly interest points were detected from wavelet image
using features from accelerated segment test (FAST) corner detection. Thirdly those
points were descripted using Speeded Up Robust Features (SURF). The algorithm
of Speeded Up Robust Features (SURF) has been employed and impl
A proposed feature extraction algorithm for handwriting Arabic words. The proposed method uses a 4 levels discrete wavelet transform (DWT) on binary image. sliding window on wavelet space and computes the stander derivation for each window. The extracted features were classified with multiple Support Vector Machine (SVM) classifiers. The proposed method simulated with a proposed data set from different writers. The experimental results of the simulation show 94.44% recognition rate.
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreIn this paper, a theoretical study of the energy spectra and the heat capacity of one electron quantum dot with Gaussian Confinement in an external magnetic field are presented. Using the exact diagonalization technique, the Hamiltonian of the Gaussian Quantum Dot (GQD) including the electron spin is solved. All the elements in the energy matrix are found in closed form. The eigenenergies of the electron were displayed as a function of magnetic field, Gaussian confinement potential depth and quantum dot size. Explanations to the behavior of the quantum dot heat capacity curve, as a function of external applied magnetic field and temperature, are presented.
Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show More