Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic worldwide. On a daily basis the number of deaths associated with COVID-19 is rapidly increasing. The main transmission route of SARS-CoV-2 is through the air (airborne transmission). This review details the airborne transmission of SARS-CoV-2, the aerodynamics, and different modes of transmission (e.g. droplets, droplet nuclei, and aerosol particles). SARS-CoV-2 can be transmitted by an infected person during activities such as expiration, coughing, sneezing, and talking. During such activities and some medical procedures, aerosols and droplets contaminated with SARS-CoV-2 particles are formed. Depending on their sizes and the environmental conditions, such particles stay viable in the air for varying time periods and can cause infection in a susceptible host. Very few studies have been conducted to establish the mechanism or the aerodynamics of virus-loaded particles and droplets in causing infection. In this review we discuss the various forms in which SARS-CoV-2 virus particles can be transmitted in air and cause infections.
Typhoid fever (TF) is a systemic infection caused by Salmonella Typhi (Salmonella Enterica) transmitted through contaminated water, food, or contact with infected individuals. In various infectious diseases, blood viscosity (BV) is affected by changes in hemoglobin concentrations and acute phase reactants. Inflammatory responses can lead to elevated plasma protein levels and further affect BV. This study aimed to investigate BV changes in patients with acute TF. A cross-sectional study was performed involving 55 patients with acute TF compared to 38 healthy controls. BV and inflammatory parameters were measured in both groups. TF patients showed reduced blood cells compared to healthy controls (p=0.001). Additionally, plasma total protein (
... Show MoreThe purpose of this research was to examine the impact of varying doses of ginger powder on broiler productivity. There were 180 commercial strain Ross 308 day old chicks utilized in the experiment, and each chick was weighed and allocated randomly among four treatments. Three different treatments were tested, each with a replication of 15 chicks. The diet was supplemented with 0.5, 1.0 and 2.0g/kg of ginger powder, respectively, as a control. As compared to the other treatments, the control group had considerably higher body weights, weight growth, feed intake, and feed conversion ratio. Ginger powder use was shown to have a detrimental impact on growth in this investigation.
The -multiple mixing ratios of γ-transitions from levels of populated in the are calculated in the present work by using the a2-ratio methods. We used the experimental coefficient (a2) for two γ-transitions from the same initial state, the statistical tensor, which is related to the a2-coefficient would be the same for the two transitions. This method was used in a previous work for pure transitions or which can be considered pure. In these cases the multiple mixing ratios for the second transition ( ) equal zero, but in our work we applied this method for mixed γ-transitions and then the multiple mixing ratio ( ) is known for one transition. Then we calculate the ( ) value and versareversa. The weight average of the -values calcu
... Show MoreThe research aims to provide an integrated knowledge framework for the two basic research topics of (marketing deception, organizational reputation), their main dimensions, and framing the knowledge within them in a serious attempt to provide appropriate answers to the questions of the research problem by diagnosing the nature of the relationship between the components of marketing deception to identify the elements and how to activate it via reputable organizational components. The research was based on the analytical survey method. The research sample targeted (364) pharmacies within the capital Baghdad exclusively, the main tool of the research was the questionnaire, as well as the design of models prepared fo
... Show More